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Preface

Options are financial instruments which are bought and sold in a market place. The people
who do it well pocket large bonuses; companies that do it badly can suffer staggering losses.
These are intensely practical activities and this is a technical book for practical people working
in the industry. While writing it I have tried to keep a number of issues and principles to the
forefront:

� The emphasis is on developing the theory to the point where it is capable of yielding a
numerical answer to a pricing question, either through a formula or through a numerical
procedure. In those places where the theory is fairly abstract, as in the sections explaining
stochastic calculus, the path back to reality is clearly marked.

� An objective of the book is to demystify option theory. An essential part of this is giving
explanations and derivations in full. I have (almost) completely avoided the “it can be shown
that . . . ” syndrome, except for the most routine algebraic steps, since this can be very time-
wasting and frustrating for the reader. No quant who values his future is going to just lift a
formula or set of procedures from a textbook and apply them without understanding where
they came from and what assumptions went into them.

� It is a sad fact that readers do not start at the beginning of a textbook and read every page until
they get to the end – at least not the people I meet in the derivatives market. Practitioners are
usually looking for something specific and want it quickly. I have therefore tried to make
the book reasonably easy to dip in and out of. This inevitably means a little duplication and
a lot of signposts to parts of the book where underlying principles are explained.

� Option theory can be approached from several different directions, using different mathe-
matical techniques. An option price can be worked out by solving a differential equation or
by taking a risk-neutral expectation; results can be obtained by using formulas or trees or
by integrating numerically or by using finite difference methods; and the theoretical under-
pinnings of option theory can be explained either by using conventional, classical statistical
methods or by using axiomatic probability theory and stochastic calculus. This book demon-
strates that these are all saying the same thing in different languages; there is only one option
theory, although several branches of mathematics can be used to describe it. I have taken
pains to be unpartisan in describing techniques; the best technique is the one that produces
the best answer, and this is not the same for all options.

The reader of this book might have no previous knowledge of option theory at all, or he
might be an accomplished quant checking an obscure point. He might be a student looking
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to complement his course material or he might be a practitioner who wants to understand the
use of stochastic calculus in option theory; but he will start with an intermediate knowledge
of calculus and the elements of statistics. The book is divided into four parts and a substantial
mathematical appendix. The first three parts cover (1) the basic principles of option theory,
(2) computational methods and (3) the application of the previous theory to exotic options.
The mathematical tools needed for these first three parts are pre-packaged in the appendix, in
a consistent form that can be used with minimal interruption to the flow of the text.

Part 4 has the ambitious objective of giving the reader a working knowledge of stochastic
calculus. A pure mathematician’s approach to this subject would start with a heavy dose of
measure theory and axiomatic probability theory. This is an effective barrier to entry for many
students and practitioners. Furthermore, as with any restricted trade, those who have crossed the
barrier have every interest in making sure that it stays in place: who needs extra competition for
those jobs or consulting contracts? This has unfortunately led to many books and articles being
unnecessarily dressed up in stochastic jargon; at the same time there are many students and
practitioners with perfectly adequate freshman level calculus and statistics who are frustrated
by their inability to penetrate the literature.

This particular syndrome has been sorted out in mature fields such as engineering and
science. If you want to be a pure mathematician, you devote your studies to the demanding
questions of pure mathematics. If you want to be an engineer, you still need a lot of mathematics,
but you will learn it from books with titles such as “Advanced Engineering Mathematics”.
Nobody feels there is much value in turning electrical engineering or solid state physics into
a playground for pure mathematicians.

It is assumed that before embarking on Part 4, the reader will already have a rudimentary
knowledge of option theory. He may be shaky on detail, but he will know how a risk-free
portfolio leads to the risk-neutrality concept and how a binomial tree works. At this point he
already knows quite a lot of useful stochastic theory without realizing it and without knowing
the fancy words. This knowledge can be built upon and developed into discrete stochastic
theory using familiar concepts. In the limit of small time steps this generalizes to a continuous
stochastic theory; the generalization is not always smooth and easy, but anomalies created
by the transition are explicitly pointed out. A completely rigorous approach would lead us
through an endless sea of lemmas, so we take the engineer’s way. Our ultimate interest is in
option theory, so frequent recourse is made to heuristic or intuitive reasoning. We do so without
apology, for a firm grasp of the underlying “physical” processes ultimately leads to a sounder
understanding of derivatives than an over-reliance on abstract mathematical manipulation.

The objective is to give the reader a sufficient grasp of stochastic calculus to allow him to
understand the literature and use it actively. There is little benefit to the reader in a dumbed
down sketch of stochastic theory which still leaves him unable to follow the serious literature.
The necessary jargon is therefore described and the theory is developed with constant reference
to option theory. By the end of Part 4 the attentive reader will have a working knowledge of
martingales, stochastic differential equations and integration, the Feynman Kac theorem, local
time, stochastic control and Girsanov’s theorem.

A final chapter in Part 4 applies all these tools to various problems encountered in studying
equity-type derivatives. Some of these problems had been encountered earlier in the book and
are now solved more gracefully; others are really not convincingly soluble without stochastic
calculus. Of course the most important application in this latter category is the whole subject
of interest rate derivatives. However, the book stops short at this point for two reasons: first, the

xiv
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field of derivatives has now become so large that it is no longer feasible to cover both equity
and interest rate options thoroughly in a single book of reasonable length. Second, three or four
very similar texts on this subject have appeared in the last couple of years; they are all quite
good and they all launch into interest rate derivatives at the point where this book finishes. Any
reader primarily motivated by an interest in interest rate options, but floundering in stochastic
calculus, will find Part 4 a painless way into these more specialist texts.

Peter James
option.theory@james-london.com
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1

Fundamentals

The trouble with first chapters is that nearly everyone jumps over them and goes straight to
the meat. So, assuming the reader gets this far before jumping, let me say what will be missed
and why it might be worth coming back sometime.

Section 1.1 is truly jumpable, so long as you really understand continuous as opposed to
discrete interest and dividends, sign conventions for long and short securities positions and
conventions for designating the passing of time. Section 1.2 gives a first description of the
concept of arbitrage, which is of course central to the subject of this book. This description is
rather robust and intuitive, as opposed to the fancy definition couched in heavy mathematics
which is given much later in the book; it is a practical working-man’s view of arbitrage, but it
yields most of the results of modern option theory.

Forward contracts are really only common in the foreign exchange markets; but the concept
of a forward rate is embedded within the analysis of more complex derivatives such as options,
in all financial markets. We look at forward contracts in Section 1.3 and introduce one of the
central mysteries of option theory: risk neutrality.

Finally, Section 1.4 gives a brief description of the nature of a futures contract and its
relationship with a forward contract.

1.1 CONVENTIONS

(i) Continuous Interest: If we invest $100 for a year at an annual rate of 10%, we get $110
after a year; at a semi-annual rate of 10%, we get $100 × 1.052 = $110.25 after a year, and
at a quarterly rate, $100 × 1.0254 = $110.38. In the limit, if the interest is compounded each
second, we get

$100 × lim
n→∞

(
1 + 0.1

n

)n

= $100 × e0.1 = $110.52

The factor by which the principal sum is multiplied when we have continuous compounding
is erc T , where T is the time to maturity and rc is the continuously compounding rate.

In commercial contracts, interest payments are usually specified with a stated compounding
period, but in option theory we always use continuous compounding for two reasons: first, the
exponential function is analytically simpler to handle; and second, the compounding period
does not have to be specified.

When actual rates quoted in the market need to be used, it is a simple matter to convert
between continuous and discrete rates:

Annual Compounding: erc = 1 + r1 ⇒ rc = ln(1 + r1)

Semi-annual Compounding: erc =
(

1 + r1/2

2

)2
⇒ rc = 2 ln

(
1 + r1/2

2

)
Quarterly Compounding: erc =

(
1 + r1/4

4

)4
⇒ rc = 4 ln

(
1 + r1/4

4

)



1 Fundamentals

(ii) Stock Prices: This book deals with the mathematical treatment of options on a variety of
different underlying instruments. It is not of course practical to describe some theory for
foreign exchange options and then repeat the same material for equities, commodities, indices,
etc. We therefore follow the practice of most authors and take equities as our primary example,
unless there is some compelling pedagogical reason for using another market (as there is in
the next section).

The price of an equity stock is a stochastic variable, i.e. it is a random variable whose
value changes over time. It is usually assumed that the stock has an expected financial return
which is exponential, but superimposed on this is a random fluctuation. This may be expressed
mathematically as follows:

St = S0 eµt + RV

where S0 and St are the stock price now and at time t, µ is the return on the stock and RV is a
random variable (we could of course assume that the random fluctuations are multiplicative,
and later in the book we will see that this is indeed a better representation; but we keep things
simple for the moment). It is further assumed that the random fluctuations, which cause the
stock price to deviate from its smooth path, are equally likely to be upwards or downwards:
we assume the expected value E[RV ] = 0.

It follows that

E[St ] = S eµt

which is illustrated in Figure 1.1.

St

t t

Se t RV

t

0= +

µ

Figure 1.1 Stock price movement

A word is in order on the subject of the stock return µ. This is the increase in wealth which
comes from investing in the stock and should not be confused with the dividend which is
merely the cash throw-off from the stock.

(iii) Discrete Dividends: Anyone who owns a stock on its ex-dividend date is entitled to receive the
dividend. Clearly, the only difference between the stock one second before and one second after
its ex-dividend date is the right to receive a sum of money $d on the dividend payment date.
Market prices of equities therefore drop by the present value of the dividend on ex-dividend
date. The declaration of a dividend has no effect on the wealth of the stockholder but is just
a transfer of value from stock price to cash. This suggests that before an ex-dividend date, a
stock price may be considered as made up of two parts: d e−rT , which is the present value of
the known future dividend payment; and the variable “pure stock” part, which may be written
S0 − d e−rT . In terms of today’s stock price S0, the future value of the stock may then be written

St = (S0 − d e−rT ) eµt + RV

4



1.1 CONVENTIONS

We could handle several dividends into the future in this way, with the dividend term in the
last equation being replaced by the sum of the present values of the dividends to be paid before
time t; but it is rare to know the precise value of the dividends more than a couple of dividend
payment dates ahead.

Finally, the reader is reminded that in this imperfect world, tax is payable on dividends. The
above reasoning is easily adapted to stock prices which are made up of three parts: the pure
stock part, the future cash part and the government’s part.

(iv) Continuous Dividends: As in the case of interest rates, the mathematical analysis is much sim-
plified if it is assumed that the dividend is paid continuously (Figure 1.2), and proportionately

t

0S e

E tS

( ) t
0S e

0S

mt

m-q 

Figure 1.2 Continuous dividends

to the stock price. The assumption is
that in a small interval of time δt ,
the stock will lose dividend equal to
q Stδt , where q is the dividend rate.
If we were to assume that µ = 0,
this would merely be an example
of exponential decay, with E〈St 〉 =
S0 e−qt . Taking into account the un-
derlying stock return (growth rate)

E[St ] = S0 e(µ−q) t

The non-random part of the stock
price can be imagined as trying to
grow at a constant exponential rate
of µ, but with this growth attenuated by a constant exponential rate of “evaporation” of value
due to the continuous dividend.

It has been seen that for a stockholder, dividends do not represent a change in wealth but only
a transfer from stock value to cash. However, there are certain contracts such as forwards and
options in which the holder of the contract suffers from the drop in stock price, but does not ben-
efit from the dividends. In pricing such contracts we must adjust for the stock price as follows:

S0 → S0 − PV[expected dividends] (discrete)
S0 → S0 e−qt (continuous)

(v) Time: As the theory is developed in this book, it will be important to be consistent in the use of
the concept of time. When readers cross refer between various books and papers on options,
they might find mysterious inconsistencies occurring in the signs of some terms in equations;
these are most usually traceable to the conventions used in defining time.

The time variable “T ” will refer to a length of time until some event, such as the maturity of a
deposit or forward contract. The most common use of T in this course will be the length of time
to the maturity of an option, and every model we look at (except one!) will contain this variable.

Time is also used to describe the concept of date, designated by t. Thus when a week elapses,
t increases by 1/52 years. “Now” is designated by t = 0 and the maturity date of one of the
above contracts is t = T .

This all looks completely straightforward; t and T describe two different, although inter-
related concepts. But it is this inter-relationship which requires care, especially when we
come to deal with differentials with respect to time. Suppose we consider the price to-
day (t = 0) of an option expiring in T years; if we now switch our attention to the value

5



1 Fundamentals

of the same option a day later, we would say that δt = 1 day; but the time to maturity
of the option has decreased by a day, i.e. δT = −1 day. The transformation between in-
crements in “date” and “time to maturity” is simply δt ↔ −δT ; a differential with re-
spect to t is therefore equal to minus the differential with respect to T, or symbolically
∂/∂t ⇒ −∂/∂T .

(vi) Long and Short Positions: In the following chapters, the concepts of long and short positions
are used so frequently that the reader must be completely familiar with what this means in
practice. We take again our example of an equity stock: if we are long a share of stock today,
this simply means that we own the share. The value of this is designated as S0, and as the price
goes up and down, so does the value of the shareholding. In addition, we receive any dividend
that is paid.

If we are short of a share of stock, it means that we have sold the stock without owning it.
After the sale, the purchaser comes looking for his share certificate, which we do not possess.
Our remedy is to give him stock which we borrow from someone who does own it.

Such stock borrowing facilities are freely available in most developed stock markets. Even-
tually we will have to return the stock to the lender, and since the original shares have gone to
the purchaser, we have no recourse but to buy the stock in the market. The value of our short
stock position is designated as −S0, since S0 is the amount of money we must pay to buy in
the required stock.

The lender of stock would expect to receive the dividend paid while he lent it; but if the
borrower had already sold the stock (i.e. taken a short position), he would not have received any
dividends but would nonetheless have to compensate the stock lender. While the short position
is maintained, we must therefore pay the dividend to the stock lender from his own resources.

The stock lender will also expect a fee for lending the stock; for equities this is usually in the
region of 0.2% to 1.0% of the value of the stock per annum. The effect of this stock borrowing
cost when we are shorting the stock is similar to that of dividends, i.e. we have to pay out some
periodic amount that is proportional to the amount of stock being borrowed. In our pricing
models we therefore usually just add the stock lending rate to the dividend rate if our hedge
requires us to borrow stock.

The market for borrowing stocks is usually known as the repo market. In this market the
stock borrower has to put up the cash value of the stock which he borrows, but since he receives
the market interest rate on his cash (more or less), this leg of the repo has no economic effect
on hedging cost.

A long position in a derivative is straightforward. If we own a forward contract or an option,
its value is simply designated as f0. This value may be a market value (if the instrument is
traded) or the fair price estimated by a model. A short position implies different mechanics
depending on the type of instrument: take, for example, a call option on the stock of a company.
Some call options (warrants) are traded securities and the method of shorting these may be
similar to that for stock. Other call options are non-traded, bilateral contracts (over-the-counter
options). A short position here would consist of our writing a call giving someone the right to
buy stock from us at a fixed price. But in either case we have incurred a liability which can be
designated as − f0.

Cash can similarly be given this mirror image treatment. A long position is written B0. It
is always assumed that this is invested in some risk-free instrument such as a bank deposit
or treasury bill, to yield the interest rate. A short cash position, designated −B0, is simply a
borrowing on which interest has to be paid.

6



1.2 ARBITRAGE

1.2 ARBITRAGE

Having stated in the last section that most examples will be taken from the world of equities,
we will illustrate this key topic with a single example from the world of foreign exchange; it
just fits better.

Most readers have at least a notion that arbitrage means buying something one place and
selling it for a profit somewhere else, all without taking a risk. They probably also know that op-
portunities for arbitrage are very short-lived, as everyone piles into the opportunity and in doing
so moves the market to a point where the opportunity no longer exists. When analyzing financial
markets, it is therefore reasonable to assume that all prices are such that no arbitrage is possible.

Let us be a little more precise: if we have cash, we can clearly make money simply by
depositing it in a bank and earning interest; this is the so-called risk-free return. Alternatively,
we may make rather more money by investing in a stock; but this carries the risk of the stock
price going down rather than up. What is assumed to be impossible is to borrow money from
the bank and invest in some risk-free scheme which is bound to make a profit. This assumption
is usually known as the no-arbitrage or no-free-lunch principle. It is instructive to state this
principle in three different but mathematically equivalent ways.

(i) Equilibrium prices are such that it is impossible to make a risk-free profit.
Consider the following sequence of transactions in the foreign exchange market:

(A) We borrow $100 for a year from an American bank at an interest rate r$. At the end of the
year we have to return $100 (1 + r$) to the bank. Using the conventions of the last section,
its value in one year will be −$100 (1 + r$).

(B) Take the $100 and immediately do the following three things:

� Convert it to pounds sterling at the spot rate Snow to give £ 100
Snow

;
� Put the sterling on deposit with a British bank for a year at an interest rate of r£. In a

year we will receive back £ 100
Snow

(1 + r£);
� Take out a forward contract at a rate F1 year to exchange £ 100

Snow
(1 + r£) for

$ 100
Snow

(1 + r£) F1 year at the end of the year.

(C) In one year we receive $ 100
Snow

(1 + r£) F1 year from this sequence of transactions and return
$100 (1 + r$) to the American bank. But the no-arbitrage principle states that these two
taken together must equal zero. Therefore

F1 year = Snow
(1 + r$)

(1 + r£)
(1.1)

(ii) If we know with certainty that two portfolios will have precisely the same value at some time
in the future, they must have precisely the same value now.
We use the same example as before. Consider two portfolios, each of which is worth $100 in
one year:

(A) The first portfolio is an interest-bearing cash account at an American bank. The amount
of cash in the account today must be $ 100

(1+r$) .
(B) The second portfolio consists of two items:

� A deposit of £ 100
(1+r£)F1 year

with a British bank;
� A forward contract to sell £ 100

F1 year
for $100 in one year.

7
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(C) The value of the forward contract is zero [for a rationale of this see Section 1.3(iv)]. Both
portfolios yield us $100 in one year, so today’s values of the American and British deposits
must be the same. They are quoted in different currencies, but using the spot rate S0, which
expresses today’s equivalence, gives

1

(1 + r£)

100

F1 year
S0 = 100

(1 + r$)
or

F1 year = S0
(1 + r$)

(1 + r£)

(iii) If a portfolio has a certain outcome (is perfectly hedged) its return must equal the risk-free
rate.
Suppose we start with $100 and execute a strategy as follows:

(A) Buy £ 100
S0

of British pounds.

(B) Deposit this in a British bank to yield £ 100
S0

(1 + r£) in one year.

(C) Simultaneously, enter a forward contract to sell £ 100
S0

(1 + r£) in one year for

£ 100
S0

(1 + r£)F1 year.

We know the values of S0, r£ and F1 year today, so our strategy has a certain outcome. The return
on the initial outlay of $100 must therefore be rs :

$ 100
S0

(1 + r£) F1 year

$100
= (1 + r$)

or

F1 year = S0
(1 + r$)

(1 + r£)

1.3 FORWARD CONTRACTS

(i) A forward contract is a contract to buy some security or commodity for a predetermined price,
at some time in the future; the purchase price remains fixed, whatever happens to the price of
the security before maturity.

T

Ft T

0

t

ST

St

Figure 1.3 Stock price vs. forward price

Clearly, the market (or spot) price and
the forward price will tend to converge
(Figure 1.3) as the maturity date is ap-
proached; a one-day forward price will be
pretty close to the spot price.

In the last section we used the exam-
ple of a forward currency contract; this is
the largest, best known forward market in the
world and it was flourishing long before the
word “derivative” was applied to financial
markets. Yet it is the simplest non-trivial
derivative and it allows us to illustrate some
of the key concepts used in studying more
complex derivatives such as options.

8



1.3 FORWARD CONTRACTS

(ii) Consider some very transitory commodity which cannot be stored – perhaps some unstorable
agricultural commodity. The forward price at which we would be prepared to buy the com-
modity is determined by our expectation of its market price at the maturity of the contract; the
higher we thought its price would be, the more we would bid for the future contract. So if we
were asked to quote a two-year contract on fresh tomatoes, the best we could do is some kind
of fundamental economic analysis: what were past trends, how are consumer tastes changing,
what is happening to area under cultivation, what is the price of tomato fertilizer, etc.

However, all commodities considered in this book are non-perishable: securities, traded
commodities, stock indexes and foreign exchange. What effect does the storable nature of a
commodity have on its forward price?

Suppose we buy an equity share for a price S0; in time T the value of this share becomes
ST . If we had entered a forward contract to sell the share forward for a price F0T , we would
have been perfectly hedged, i.e. we would have paid out S0 at the beginning and received
a predetermined F0T at time T. From the no-arbitrage argument 1.2(iii), this investment must
yield a return equal to the interest rate. Expressed in terms of continuous interest rates, we
have

F0T

S0
= erT or F0T = S0 erT

This result is well known and seems rather banal; but its ramifications are so far-reaching that
it is worth pausing to elaborate. Someone who knows nothing about finance theory would be
forgiven for assuming that a forward rate must somehow depend on the various characteristics
of each stock: growth rate, return, etc. But the above relationship shows that there is a fixed
relationship between the spot and forward prices which is the same for all financial instruments
and which is imposed by the no-arbitrage conditions. The reason is of course immediately
obvious. With a perishable commodity, forward prices can have no effect on current prices: if
we know that the forward tomatoes price is $1 million each, there is nothing we can do about
it and the current price will not be affected. But if the forward copper price is $1 million, we
buy all the copper we can in the spot market we can, put it in a warehouse and take out forward
contracts to sell it next year; this will move the spot and forward prices to the point where they
obey the above relationship.

We express this conclusion rather more formally for an equity stock, since it is actually the
cardinal principle of all derivative pricing theory: the relationship between the forward and
spot rate is absolutely independent of the rate of return µ. This is known as the principle of
risk neutrality. The reader must be absolutely clear on what this means: if it suddenly became
clear that the growth rate of an equity stock was going to be higher than previously assumed,
there would undoubtedly be a jump in both the spot and forward prices; but the relationship
of the forward price to the spot price would not change. In a couple of chapters, we will show
that risk neutrality holds not only for forwards but for all derivatives.

(iii) Forward Price with Dividends: A forward contract to buy stock in the future at a price F0T

makes no reference to dividends. At maturity one pays the price and gets the stock, whether or
not dividends were paid during the life of the contract. In order to calculate the forward price
in the presence of dividends, we use the same no-arbitrage arguments as before: buy a share
of equity for a price S0 and simultaneously write a forward contract to sell the share at time T
for a price F0T . Our total receipts are a dividend d at time τ and the forward price F at time t.
Taking account of the time value of money, this gives us a value of F0T + d er (T −τ ) at time T.

9
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Using the no-arbitrage argument as before, we have(
F0T + d er (T −τ )

)
S0

= erT or F0T = (S0 − d e−rτ )erT

This is confirmation of the rule that dividends can be accommodated by making the substitution
S0 → S0 − PV[expected dividends] which we examined in Section 1.1(iv). Several dividends
before maturity are handled by subtracting the present value of each dividend from the stock
price. In the same section, we saw that continuous dividends require the substitution S0 →
S0 e−qt . The forward price is then given by

F0T = S0 e(r−q)T

(iv) Generalized Dividends: At this point it is worth extending the analysis to forward contracts
on foreign exchange and commodities; these behave very similarly to equities, but the concept
of dividend must be re-interpreted.

In Section 1.2 the power of arbitrage arguments was illustrated with a lengthy example
using forward foreign exchange contracts. We used simple interest rates to derive a relationship
between the forward and spot US dollar/British pound exchange rates. This is given by equation
(1.1) but may be re-expressed in terms of continuous interest rates as

F0T = S0 e(r$−r£)t

Comparing this with the previous equation, the interest earned on the foreign currency (£)
takes the role of a dividend in the equity model. The analogy is, of course, fairly close: if we
buy equity the cash throw-off from our investment is the dividend; if we buy foreign currency
the cash throw-off is the foreign currency interest.

Commodities are slightly more tricky. Remember the argument of Section 1.1(iv) used in
establishing the continuous dividend yield formula: it was assumed that the equity is continually
paying us a dividend yield. Storage charges are rather similar, except that they are a continual
cost: these charges cover warehousing, handling, insurance, physical deterioration, petty theft,
etc. If it is assumed that storage charges are proportional to the value of the commodity, they
can be treated as a negative dividend. The reader is warned that this analysis is scoffed at by
most commodities professionals, and it must be admitted that the relationships do not hold very
well in practice. The main interest for the novice is that it provides an intellectual framework
for understanding the pricing.

(v) Forward Price vs. Value of a Forward Contract: Suppose we take out a forward contract to
buy a stock. A couple of weeks then go by and we decide to close out the contract. Clearly
we do not just cancel the contract and walk away; some close-out price will be paid by or to
our counterparty, depending on how the stock price has moved. The reason is that the forward
price X specified in the original contract is no longer the no-arbitrage forward price F0T .

The value of an off-market forward contract can be deduced using the same no-arbitrage
arguments as before: suppose we have a portfolio consisting of one share of stock and a forward
contract to sell this share at time T for a price X. If the value of a contract to buy forward at an
off-market price X is written f0T , the value of the portfolio is S0 − f0T (the negative sign arises
as our portfolio contains a contract to sell forward). The value of the portfolio at maturity will
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be X, so that the no-arbitrage proposition (1.1) may be written

X

S0 − f0T
= erT or f0T = S0 − X e−rT (1.2)

(vi) Value of a Forward Contract with Dividends: The analysis of the last section is readily adapted
to take dividends into account. If there is a single discrete dividend at time τ , the numerator in
the first part of equation (1.2) becomes X + d er (T −τ ), giving a forward contract value

f0T = S0 − X e−rT − d e−rτ (1.3)

For continuous dividends, we simply make the substitution S0 → S0 e−qt into equation (1.1)
to give

f0T = S0 e−qT − X e−rT = e−rT (F0T − X ) (1.4)

1.4 FUTURES CONTRACTS

In the last section it was seen that after a forward contract has been struck, it can build up very
substantial positive or negative value depending on which way the forward price subsequently
moves. This means that substantial credit exposure could build up between counterparties to
transactions. This may be acceptable in a market like the forward foreign exchange market
where the participants are usually banks; but it will be a constraining factor in opening the
market to players of lower credit standing. Hence the futures contract was devised: it has
substantially the same properties as the forward contract but without leading to the build up of
value which makes forwards unsuitable for exchange trading.

(i) Futures and forwards are quite similar in many ways so it is very easy to confuse them. However,
the two types of contract are cousins rather than twins, and it is important to be clear about
their differences. The essential features of a futures contract are as follows:

� A futures contract on a commodity allows the owner of the contract to purchase the com-
modity on a given date. Like a forward contract, a futures has a specified maturity date.

� When the contract is first opened, a futures price (which is quoted in the market) is specified.
This can loosely be regarded as the analog of the forward price F0T .

� Here the two types of contract diverge sharply. A forward contract provides for the commod-
ity to be bought for the price F0T which is fixed at the beginning; a futures contract states
that the commodity will be bought for the futures price quoted by the market at the end
of the contract. But one second before the maturity of the contract, the futures price must
equal the spot price. Where then is the benefit in a contract which allows a commodity to be
bought at the prevailing spot price?

� The answer is that a futures contract is “settled” or “marked to market” each day. If we enter
a futures contract at a price �0T , we receive an amount �1T − �0T one day later (or pay
this away, if the price went down). The following day we are paid �2T − �1T ; and so on
until maturity. In a sense, the futures contract is like a forward contract in which the party
who has the credit risk receives a collateral deposit so that the net exposure is zero at the
end of each day.

� A futures contract may be compared to a forward contract which is closed out each day
and then rolled forward by taking out a new contract at the prevailing forward rate: enter a

11
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contract at a price F0T . One day later, when the forward price is F1T , close out the existing
contract and take out a new one at F1T . The amount owed from the close out of the first
day’s contract is F0T − F1T , which would normally be payable at maturity (but which could
be discounted and paid up front).

Without getting into the mechanical details, it is worth knowing that for some types of futures
contracts the last leg of this sequence is the delivery of the commodity against the prevailing
spot price (physical settlement); others merely settle the difference between the spot price and
yesterday’s futures price (cash settlement).

(ii) Futures Price: We now consider the price of a futures contract to buy a commodity in time
T. The number of days from t = 0 to t = T is N; for convenience we can write δt = T/N =
1/365. We now perform the following armchair experiment:

1. At the outset we enter two contracts, neither of which involves a cash outlay:

� Enter a forward contract to sell one unit of a commodity at the forward price F0T in
time T.

� Enter a futures contract at price �0T to buy e−r (N−1)δt units of the commodity at time T
(remember δt = one day).

2. After the first day, close out the futures contract to yield cash (�1T − �0T ) e−r (N−1)δt :

� Place this sum on deposit with a bank until maturity in N − 1 days, when it will be worth
(�1T − �0T ). If �1T < �0T , we borrow from the bank rather than depositing with it.

� Enter a new futures contract at price �1T to buy e−r (N−2)δt units of the commodity at
time T.

3. After the second day, close out the futures contract to yield cash (�2T − �1T ) e−r (N−2)δt :

� Place this sum on deposit with a bank until maturity in N − 2 days, when it will be worth
(�2T − �1T ). If �2T < �1T , we borrow from the bank rather than depositing with it.

� Enter a new futures contract at price �1T to buy e−r (N−3)δt units of the commodity at
time T.

4. And so on. . . .

Suppose the futures and forward strategies are both cash settled. The amount of cash resulting
from the futures strategy will be

(�1T − �0T ) + (�2T − �1T ) + (�3T − �2T ) + · · · + (�N T − �(N−1)T
)

= �N T − �0T = ST − �0T

since �N T is just equal to the commodity price ST at time T.
If the forward contract is cash settled, we will merely receive the difference between the

original forward price and the current spot price, i.e. a sum F0T − ST . Our total cash at the
end of this exercise will therefore be F0T − �0T . The whole strategy yields a profit which was
determinable at the beginning of the exercise; we started with nothing and have manufactured
F0T − �0T . The only way this can be squared with the no-arbitrage principle is if the profit is
zero, i.e. if

�0T = F0T
(= S0 e(r−q)T

)
(1.5)
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(iii) Effect of Interest Rates: Many students gloss over the last results with a shrug: after all,
“forwards and futures are kinda the same so the prices gonna be the same”. This view, which
is surprisingly widely held even in the trade, misses the important difference between the two
instruments. In fact, the last pricing relationship is by no means obvious and only holds in
certain circumstances.

We return to the futures armchair strategy of the last subsection. This depended on the
fact that interest rates were constant, so that we knew exactly how many futures contracts to
enter each day. But if interest rates change from day to day, the armchair experiment no longer
works and the equality of the forwards and futures prices breaks down. The effect is particularly
marked if the commodity price is correlated with the interest rate. Consider, for example, the
case where the commodity is a foreign currency. It is well known that the foreign exchange rate
can be strongly correlated with the interest rate. We may then find in our armchair arbitrage
strategy that each day when (�(n+1)T − �nT ) is large and positive, the interest rate at which
we invest funds is high; but when (�1T − �0T ) is large and negative, the interest rate is low.
This would create a systematic bias and equation (1.5) would no longer hold.
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2

Option Basics

It is unlikely that a reader will pick up a book at this level without already having some idea of
what options are about. However it is worth establishing a minimum base of knowledge and
jargon, without which it is not worth proceeding further. All the material in this chapter was
well known before modern option theory was developed.

2.1 PAYOFFS

(i) A call option on a commodity is a contract which gives the holder of the option the right to buy
a unit of the commodity for a fixed price X (the strike price). The key feature of this contract
is that while it confirms the right, it does not impose an obligation. If it were a contract which
both allowed and obligated the option holder to buy, we would have a forward contract rather
than an option. The difference is that the option holder only exercises his right if it is profitable
to do so. For example, suppose an option holder has a call option with X = $10. If the price
of the commodity in the market is $12, the option can be exercised for $10 and the underlying
commodity sold for $12, to yield a profit of $2; on the other hand, if the market price is $8, the
option will not be exercised.

The outcome of this type of option contract can be summarized mathematically as follows:

Payoff = max [0, (ST − X )] or (ST − X )+

which means that the payoff equals ST − X , but only if this is positive; otherwise it is zero.
The payoff may equally be regarded as the value of the call option at exercise Cpayoff. Much

of this book is dedicated to the following problem: if we know Cpayoff, how can we calculate
the value of the option now?

A put option gives the holder the right (but not the obligation) to sell a unit of a commodity
for a strike price X. This type of option is completely analogous to the call option. The payoff
(option value at exercise) can be written

Ppayoff = max[0, (X − ST )] or (X − ST )+

(ii) The payoff of a call, a put and a forward contract are shown in Figure 2.1. These are the so-
called “hockey-stick” diagrams which show the value at exercise or payoff of the instruments
as a function of the price of the underlying commodity.

(iii) An option is an asset with value greater than or equal to zero. If we buy an option we own
an asset; but someone out there has a corresponding liability. He is the option writer and is
said to be short an option in the jargon of Section 1.1. An option is only exercised if it yields
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Figure 2.1 Payoff diagrams

a profit to the holder, i.e. if the option writer incurs a loss. The payoff diagrams of such short
positions are shown in Figure 2.2 and are reflections of the long positions in the x-axis.
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TS X
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Figure 2.2 Payoff diagrams for short positions

(iv) Put and call options exist in two forms: European and American. A European option has a
fixed maturity T and can only be exercised on the maturity date. An American option is more
flexible; it also has a fixed expiry date, but it can be exercised at any time beforehand. American
options are the more usual in the traded options markets.

Looking back at the payoff diagrams of the previous paragraphs, these apply to European
options on the maturity dates of the options. On the other hand, the payoff diagrams for Ameri-
can options could be achieved whenever the holder of the option decides to exercise. In general,
European options are much easier to understand and value, since the holder has no decision
to make until the maturity date; then he merely decides whether exercise yields a profit or not.
With an American option, the holder must decide not only whether to exercise but also when.

2.2 OPTION PRICES BEFORE MATURITY

(i) Put-Call Parity for European Options: Consider the following two portfolios:
� A forward contract to buy one share of stock in time T for a price X.
� Long one call option and short one put option each on one share of stock, both with strike

price X and maturity T.

The values of the portfolios now and at maturity are shown in Table 2.1. It is clear that
whatever the maturity value of the underlying stock, the two portfolios have the same payoff
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Table 2.1 Initial and terminal values of two portfolios

Value now Value at t = T Value at t = T
ST < X X < ST

Forward purchase
of stock at X f0(T ) = S0 − X e−rT ST − X ST − X

Long call; short put C0(X, T ) − P0(X, T ) Cpayoff − Ppayoff

= −Ppayoff = ST − X
Cpayoff − Ppayoff

= Cpayoff = ST − X

value. Therefore, by the no-arbitrage proposition 1.2(ii), the two portfolios must have the same
value now. This important relationship is known as put–call parity and may be expressed as

f0T = C0(X, T ) − P0(X, T )

or equivalently

P0(X, T ) + S0 = C0(X, T ) + X e−rT (2.1)

If dividends are taken into account, the last equation may be written

P0 + (S0 − d e−rτ ) = C0 + X e−rT discrete dividend at τ
P0 + S0 e−qT = C0 + X e−rT continuous dividend rate q

(ii) Consider the value of a put option prior to expiry, if the stock price is much larger than the strike
price. Clearly the value of this asset cannot be less than zero since it involves no obligation;
on the other hand, its value must be very small if S0 → ∞, since the chance of its being
exercised is small. The same reasoning applies to a call option for which S0 → 0. These can
be summarized as

lim
S0→∞

P0 → 0; lim
S0→0

C0 → 0

Using both these results in the put–call parity relationship of equation (2.1) gives the following
general result for European options without dividends:

lim
S0→∞

C0 → f0T = S0 − X e−rT ; lim
S0→0

P0 → − f0T = X e−rT − S0 (2.2)

These results are illustrated in Figure 2.3. The dotted lines and the x-axes provide the asymp-
totes for the graphs of C0 and P0 against S0, for European options. The third graph illustrates

Call Option Put Option Put– Call Parity

-- r TXe 0S

0S
0S

0C 0P 0f

r TXe

- r TXe

0S

Figure 2.3 Option values before maturity
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the put–call parity relationships with the dotted line representing the value of the forward
contract.

One feature should be noted. The dotted lines in the first two graphs look very much like
payoff diagrams; but they are not the same. Payoff hockey sticks have a fixed position while
these asymptotes drift towards the right over time. They only correspond to the payoff diagrams
at maturity.

2.3 AMERICAN OPTIONS

In the last section it was seen that the curve of the value of a European option always lies above
the asymptotic lines. What of an American option which can be exercised at any time before
maturity? Some very general and important conclusions can be reached using simple arbitrage
arguments.

(i) First, we establish three almost trivial looking results:

� The prices of otherwise identical European and American options must obey the relationship

PriceAmerican ≥ PriceEuropean

This is because an American option has all the benefits of a European option plus the right
of early exercise.

� An American option will always be worth at least its payoff value: if it were worth less,
we would simply buy the options and exercise them. Conversely, an American option will
not be exercised if its value is greater than the payoff, as this constitutes the purposeless
destruction of value.

� The price of a stock falls on an ex-dividend date by the amount of the dividend which is
paid. The holder of an option does not receive the benefit of a dividend, so the potential
payoff of an American call drops by the value of the dividend as the ex-dividend date is
crossed. If an American call is exercised, this will therefore always occur shortly before an
ex-dividend date. By the same reasoning, an American put is always exercised shortly after
an ex-dividend date.

(ii) American Calls: In Section 2.2(ii) we saw that the graph of a call option against price must al-
ways lie above the line representing the value of a forward, i.e. CEuropean ≥ f0T = S0 − X e−rT .
The first point of the last subsection then implies that CAmerican ≥ f0T = S0 − Xe−rT and if r
and T are always positive (i.e. e−rT ≤ 1) then we must also have

CAmerican ≥ S0 − X

If this is true, then by the second point of the last subsection, it can never pay to exercise an
American call before maturity; but if an American call is never exercised early, this feature
has no value and the price of an American call must be the same as the price of a European
call.

(iii) Dividends: The last conclusion is summed up by the first of the three graphs in Figure 2.4.
However if dividends are introduced, the picture changes. Using the discrete dividend model,
the line representing the value of the forward becomes S0 − d e−rτ − X e−rT ; this line may lie
to the right of the payoff line S0 − X , in which case the curve for the American call would cut
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the payoff line at some point. It would then pay to exercise the American call, i.e. it may pay
to exercise if S0 − d e−rτ − X e−rT < S0 − X or if

d e−rτ > X (1 − e−rT )

This is a condition that the present value of the dividend is greater than the interest earned
on the cash that would be used to exercise the option. This clearly makes sense if an extreme
example is considered: suppose a company is about to dividend away three quarters of its
value; if S > X it makes sense to exercise just before the dividend.
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Figure 2.4 American calls with dividends

The last of the graphs in Figure 2.4 shows the same issue expressed in terms of the continuous
dividend model. The value of the forward is now represented by S0 e−qT − X e−rT . The slope
of this line is less than that of the payoff line, so the two lines cross at some point. This happens
if S0 e−qT − X e−rT < S0 − X or

S0(1 − e−qT ) > X (1 − e−rT )

Once again, the condition is that the dividends earned are greater than the interest on the
exercise price. If it might pay to exercise a call before maturity, then clearly the value of the
American option must be greater than its European equivalent.

(iv) American Puts: The divergence between the values of American and European options is much
starker for puts than for calls. By the same reasoning as in Section 2.3(ii), we may conclude
that the value of an American put must lie above and to the right of the diagonal line depicting
the value of a short position in a forward contract, i.e.

PAmerican ≥ − f0T = X e−rT − S0

From Figure 2.5 for a non-dividend-paying put, it can be seen that the short-forward diagonal
is to the left of the payoff diagonal. The curve for the put option, which is asymptotic to
the short forward line, will cut across the payoff line. In the terms of the last couple of
subsections, the payoff will be greater than the option price over a substantial region so that
the precondition exists for exercise and the American put has a higher price than the European
put.
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Figure 2.5 American put

2.4 PUT–CALL PARITY FOR AMERICAN OPTIONS

(i) It will be apparent to the reader that given the more complex behavior of American options, there
is no slick formula for put–call parity as there is for European options. However for short-term
options, fairly narrow bounds can be established on the difference between American put and
call prices.

exercisenow maturity

ττττt = 0 t = t = TConsider American options with maturity T which
may be exercised at a time τ . The value of the proceeds
of each option depends not only on the price ST at
maturity, but also on whether and when it is exercised. If the option is exercised early, the
strike price is paid and the time value of this cash has to be taken into account. For example,
an American call option might be exercised at any time τ between now and T . After exercise,
the stock that we buy under the option will continue to vary stochastically, achieving value ST

at time T; but the exercise price would have been paid earlier than final maturity, so that the
time T value of the strike price is X er (T −τ ) where 0 ≤ τ ≤ T . The generalized payoff value
of an American call option assessed at time T may therefore be written as ST − X er (T −τ ); the
corresponding value for an American put option is X er (T −τ ) − ST .

Put–call parity relations for American options may be obtained using arbitrage arguments
analogous to those for European options. In the analysis that follows, we make the decision
ahead of time to hold any American option to maturity. Any short option position may be
exercised against us at time τ (0 ≤ τ ≤ T ) and we then maintain the resultant stock position
until maturity.

(ii) Let us now compare the following two portfolios:

� A forward contract to sell one share of stock in time T for a price X.
� Long one put option and short one call option each on one share of stock, both with strike

price X and maturity T. Our strategy in running this portfolio is only to exercise the put
options on their expiry date. Our counterparty may choose to exercise the call against us
before maturity, in which case we invest the cash and hang on to the short stock position
until maturity.

Initial and terminal values of these two portfolios are given in Table 2.2. The notation {Q, 0}
signifies a quantity which could have value Q or 0, depending on whether our counterparty
has exercised the call option or not. A few seconds reflection will convince the reader that the
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2.4 PUT–CALL PARITY FOR AMERICAN OPTIONS

Table 2.2 Initial and terminal values of two portfolios

Value now Value at t = T Value at t = T
ST < X X < ST

Forward sale − f0(X, T ) = X e−rT − S0 X − ST X − ST
of stock at X

Long put;
short call P0(X, T ) − C0(X, T ) Ppayoff − Cpayoff

= (X − ST ) − {ST − X er (T −τ ), 0
} Ppayoff − Cpayoff

= 0 − {ST − X er (T −τ ), 0
}

value of the option portfolio is always equal to or less than the proceeds of the forward share
sale, whatever the value of ST . In terms of the present value of the two portfolios, this may be
written

C0(X, T ) − P0(X, T ) ≤ S0 − X e−rT

(iii) A very similar argument to that given in the last subsection allows us to establish a different
bound. This time we compare the following two portfolios:

� A forward contract to buy one share of stock in time T for a price X erT .
� Long one call option and short one put option each on one share of stock, both with strike

price X and maturity T. Our strategy in running this portfolio is only to exercise the call
options on their expiry date. Our counterparty may choose to exercise the put early.

Table 2.3 Initial and terminal values of two portfolios

Value now Value at t = T Value at t = T
ST < X X < ST

Forward f0(X erT , T ) = S0 − X er ST − X erT ST − X erT

purchase of
stock at X erT

Long call;
short put C0(X, T ) − P0(X, T ) Cpayoff − Ppayoff

= 0 − {X er (T −τ ) − ST , 0
} Cpayoff − Ppayoff

= (ST − X ) − {X er (T −τ ) − ST , 0
}

This time it is obvious that the terminal values of the option portfolio are always greater than
or equal to the forward contract proceeds. The inequality may therefore be written

C0(X, T ) − P0(X, T ) ≥ S0 − X

The results of this section can be summarized to give a put–call parity relationship for American
options as follows:

S0 − X ≤ CAmerican − PAmerican ≤ S0 − X e−rT (2.3)

This relationship can be generalized to include the effects of dividends by making the normal
substitutions S → S e−qt or S → S−PV[D].

21



2 Option Basics

2.5 COMBINATIONS OF OPTIONS

This is a book on option theory and many “how to” books are available giving very full
descriptions of trading strategies using combinations of options. There is no point repeating all
that stuff here. However, even the most theoretical reader needs a knowledge of how the more
common combinations work, and why they are used; also, some useful intuitive pointers to the
nature of time values are examined, before being more rigorously developed in later chapters.
Most of the comments will be confined to combinations of European options.

(i) Call Spread (bull spread, capped call): This is the simplest modification of the call option.
The payoff is similar to that of a call option except that it only increases to a certain level and
then stops. It is used because option writers are often unwilling to accept the unlimited liability
incurred in writing straight calls. The payoff diagram is shown in the first graph of Figure 2.6.

It is important to understand that a European call spread (and indeed any of the combinations
described below) can be created by combining simple options. The second graph of Figure 2.6
shows how a call spread is merely a combination of a long call (strike X1) with a short call
(strike X2). The third graph is the payoff diagram of a short call spread; it is just the mirror
image in the x-axis of the long call spread.

Call Spread Long and Short Calls Short Call Spread

PayoffPayoff Payoff

TS

1X 2X

TS

1X 2X

TS

1X 2X

Figure 2.6 Call spreads

(ii) Put Spread (bear spread, capped put): This is completely analogous to the call spread just
described. The corresponding diagrams are displayed in Figure 2.7.

Put Spread Long and Short Puts Short Put Spread

Payoff
Payoff

Payoff

TS

1X 2X

TS

1X 2X

TS

1X 2X

Figure 2.7 Put spreads

(iii) In glancing over the last two sets of graphs, the reader will notice that the short call spread and
the put spread are very similar in form; so are the call spread and short put spread. How are
they related?
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2.5 COMBINATIONS OF OPTIONS

All the payoff diagrams used so far have been graphs plotting the value of the option position
at maturity against the price of the underlying stock or commodity. But the holder of an option
would have had to pay a premium for this position (the price of the option). To get a “total
profits” diagram, we need to subtract the future value (at maturity) of the option premium from
the payoff value, i.e. the previous payoff diagrams have to be shifted down through the x-axis
by the future value of the premium. Similarly, short positions would be shifted up through the
x-axis.

Call Spread Short Put Spread Box Spread

1X 2X

r T
1 2(C - C ) e

1 2(X X ) 1X

2X

r T
1 2(P - P ) e

1X X-
1 2

Figure 2.8 Equivalent spreads

The effects of including the initial premium on the final profits diagram of a call spread and
a short put spread are shown in the first two graphs of Figure 2.8. The notation C1, C2, P1, P2

is used for the prices of call and put options with strikes X1, X2.
The diagonal put and call payoffs are 45◦ lines, so that the distance from base to cap

must be X2 − X1 as shown. Recall the put–call parity relationship for European options
C + X e−rT = P + S, from which

(C1 − C2) er t + (P2 − P1) er t = X2 − X1

It follows immediately that these two final profit diagrams are identical. All of these payoffs
could be generated using just puts or just calls, and the costs would be the same. This theme is
developed further below. Although it is possible to create spreads with American options, re-
member that the put–call parity equality no longer holds; American puts and calls are therefore
not interchangeable as are their European counterparts.

(iv) Box Spread: The third graph of Figure 2.8 shows an interesting application of the concepts just
discussed. By definition, a put spread is perfectly hedged by a short put spread; but we have
just seen that a European short put spread is identical to a European call spread. Thus a put
spread is exactly hedged by a call spread. The combination of the two is called a box spread.

Suppose we buy a call spread for C1 − C2 and a put spread for P1 − P2; the put–call parity
equality of the last paragraph shows that this will cost (X1 − X2) e−rT .

Since a box spread is completely hedged, this structure will yield precisely X1 − X2 at
maturity. In other words, a combination of puts and calls with individually stochastic prices
yields precisely the interest rate.

There are two purposes for which this structure is used. First, if one (or more) of the
four options, bought in the market to make the box spread, is mispriced, the yields on the
cash investment may be considerably more than the interest rate. This is quite a neat way
of squeezing the value out of mispriced options. Second, gains on options sometimes receive
different tax treatment from interest income, so that this technique has been used for converting
between capital gains and normal income.
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2 Option Basics

(v) Straddle: This is another popular combination of options with the payoff shown in the first
graphs of Figure 2.9 . This consists of a put and a call with the same strike price. People invest
in this instrument when they think the price of the underlying stock or commodity will move
sharply, but they are not sure in which direction. Clearly, this is tantamount to betting on the
future volatility of the stock.

Payoff Payoff

Straddle Strangle

TS

X

TS

1X 2X

Figure 2.9 Straddle and strangle

Strangle: A slightly modified version of the straddle is shown in the second graph of Figure 2.9.
A straddle is quite an expensive instrument, but by separating the strike prices of the put and
the call, the cost can be reduced.

(vi) Collar: One of the most important uses of an option is as a hedge against movement in the
underlying price. Typically, the owner of a commodity can buy an at-the-money put option;
for each $1 drop in the commodity price, there is a $1 gain in the payoff of the put. The put
option acts as an insurance policy on the price of the commodity.

If an insurance premium is too expensive, it can be reduced by introducing an “excess”
or “deductible”. For example, the owner of the commodity bears the first $5 of loss and the
insurance covers any further loss. This would be achieved by buying a put whose strike price
is $5 below the current market price.

Another way in which the insurance cost can be decreased is by means of a collar. In addition
to buying a put, the commodity holder sells a call with strike somewhere above the current
commodity price. The first graph of Figure 2.10 shows the payoff for a collar. Below X1, the

Collar Long Commodity Net Exposure

Payoff
Payoff

Payoff

TS

1X
2X TS TS1X

2X00S

Figure 2.10 Collars
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2.5 COMBINATIONS OF OPTIONS

commodity holder receives $1 from the put for each drop of $1 in the price. Above X2, he pays
away $1 under the call option for each $1 rise in the price. If the option positions are combined
with his position in the underlying commodity (second graph), the result is his net exposure
to the commodity (third graph). Between X1 and X2 he is exposed to movements in the price;
outside these limits he is completely hedged. A particularly popular variety is the zero-cost
collar where the strike prices are arranged so that the receipt from the call exactly equals the
cost of the put.

(vii) Butterfly: As with simple put and call options, the writer of a straddle accepts unlimited
liability. This can be avoided by using a butterfly, which is just a put spread plus a call spread
with the upper strike of the first equal to the lower strike of the second. Like the straddle, this
instrument is basically a volatility play, but the upside potential for profit has been capped.
The payoff diagram is given in the first graph of Figure 2.11.

Payoff

Condor

Payoff

Butterfly

TS

X

TS

1X 2X 3X 4X

Figure 2.11 Butterfly and condor

Condor: This instrument is very similar to the butterfly, but has different strike prices for the
put spread and call spread.

(viii) In Section 2.5(iii) it was shown how a European spread could be constructed either from puts
or from calls; this is equally true of the butterfly and condor. One is occasionally confronted
with a very complicated payoff diagram which needs to be resolved into its underlying puts
and calls. A condor provides a good example of how to proceed.

� Starting from the left end, move towards the right along the payoff diagram for the condor.
� The first direction change is at X1, where the line bends down 45◦. This is achieved with a

short call (−C1).
� Moving on to X2, the line bends up 45◦: long call (−C2).
� At X3, the line bends up 45◦: long call (+C3).
� At X4, the line bends down 45◦: short call ( −C4).

The condor could therefore be constructed as −C1 + C2 + C3 − C4.
On the other hand, moving from the right to the left of the diagram, this sort of reasoning

would yield a combination −P4 + P3 + P2 − P1. As a further variation, we could conceptually
break the condor in two, constructing one half out of puts and the other half out of calls.

These complex payoffs are therefore ambiguous, in that they can be constructed in several
different ways. But for European structures, put–call parity always assures that the cost is the
same, whatever elements are used to build them.
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2.6 COMBINATIONS BEFORE MATURITY

(i) The value of a combination of options before maturity is just equal to the sum of the values
of the constituent simple options. The evolution of the value of a butterfly at times T1 and
T2 before and at maturity is shown in Figure 2.12. Long before maturity, the curve of f is
featureless and only loosely acknowledges the direction of the asymptotic lines (see Section
2.3). As time passes, this curve begins to cling more and more tightly to the asymptotes, which
are themselves moving towards the right. Finally, at maturity, the curve becomes the payoff
diagram.

T : large T : small T = 0
Maturity

fff

TS

X

TS TS
-r TX e -r TX e X X

Figure 2.12 Derivative value before maturity

(ii) The curvature of f is not uniform. In one region it is concave upwards (in the center); on either
side it is convex downwards. Curvature is measured by a quantity called gamma; in the center,
gamma is positive; on either side, it is negative.

The direction of the curvature remains fairly much the same as time elapses. However the
sharpness of the curvature changes over time, becoming acute at the corners of the payoff
diagram at maturity. Clearly, the size of gamma is related to how sharply the asymptotes
change direction. In the center they turn through 90◦ and gamma has the highest (positive)
value. On either side, the asymptotes turn through 45◦ and gamma has high (negative) values;
at the edges they do not turn and gamma is small.

(iii) The rate at which the value of f changes over time is known as theta. At the center of the
butterfly, the curve of f is moving downwards over time so that theta is negative; at the two
edges the value is moving up so that theta is positive.

Some very significant observations can be made purely from the geometry of the graphs.

� At the center: gamma is at its largest and positive. Theta is negative and larger than anywhere
else in the diagram. This part of the curve has to go all the way down to reach the bottom of
the “V” by maturity.

� At the middle of the sloping sides: gamma is at its smallest since this is where it changes
from positive to negative. Theta is small since the curve for f does not have to move far to
reach the asymptotes by maturity.

� At the top corners: gamma is negative and fairly large, although not as large as at the center.
Theta is positive and fairly large again since the curve has quite a long way to travel to get
into the corners by maturity.

� At the extreme edges: gamma is negative but small. Theta is positive and small.
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2.6 COMBINATIONS BEFORE MATURITY

The inevitable conclusion is that gamma and theta are inversely related. If the reader tests
this hypothesis with any payoff, he will always come to the same conclusion. The relationship
between gamma and theta will be rigorously analyzed later in the course; but it is comforting
to know that one of the most important conclusions of option theory can be confirmed by a
casual glance at the payoff diagrams.
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3

Stock Price Distribution

3.1 STOCK PRICE MOVEMENTS

(i) Consider the evolution of a stock price: the prices observed at successive moments in time
δt apart are: S0, S1, . . . , SN . For simplicity, it is assumed that no dividend is paid in this
period. The “price relative” in period n is defined as the ratio Rn = Sn/Sn−1. This quantity is a
random variable and we make the following apparently innocuous but far-reaching assumption:
the price relatives are independently and identically distributed. If the price relatives are
independently distributed, the next move does not depend on what happened at the last move.
This is a statement of the so-called weak form market efficiency hypothesis, which maintains
that the entire history of a stock is summed up in its present price; future movements depend
only on new information and on changes in sentiment or the environment. People who believe
in charts or concepts such as momentum for predicting stock prices clearly do not believe in
this hypothesis; in consequence, they should not believe in the results of modern option theory.

If price relatives are identically distributed, then their expected means and variances are
constant, i.e.

E

[
Sn

Sn−1

]
= E

[
Sn+1

Sn

]
; var

[
Sn

Sn−1

]
= var

[
Sn+1

Sn

]

The first equation says that the expected growth of the stock remains constant. It will be seen
below that the second equation is a statement that the volatility of the stock remains constant.

(ii) Consider the following simple identity:

SN

S0
≡ S1

S0

S2

S1
· · · SN

SN−1

= R1 R2 · · · RN

Taking the logarithm of each side gives

xN = r1 + r2 + · · · + rN where xN = ln
SN

S0
; rn = ln Rn = ln

Sn

Sn−1
(3.1)

Some very profound conclusions emerge from this trivial-looking equation: if the price
relatives Rn are identically distributed and independent, then so are their logarithms, rn . They
can be treated as independent random variables, drawn from the same infinite population. It
follows that

E[xN ] =
N∑

n=1

E[rn] = N E[rn] = NmδT

var[xN ] =
N∑

n=1

var[rn] = N var[rn] = Nσ 2
δT

where mδT and σ 2
δT are the mean and variance of the logarithm of the price relatives.



3 Stock Price Distribution

Suppose that two people perform this analysis on the same stock price evolution, but one
person considers N successive time increments of length δT while the other considers N/2
time increments of length 2δT . Slicing up the stock price path is completely arbitrary, but the
expectation E [xT ] must be the same in both cases. Explicitly writing out each example:

E[xT ] = NmδT and E[xT ] = N

2
m2δT

From which it follows that m2δT = 2mδT , or in other words mδT is proportional to the time
interval δT . We may therefore write mδT = mδT ; identical reasoning gives σ 2

δT = σ 2δT . The
mean and variance of xT may now be written

E[xT ] = m NδT = mT

var[xT ] = σ 2 NδT = σ 2T
(3.2)

Both mean and variance are equal to a constant multiplied by T.

(iii) Central Limit Theorem: Before going on to derive the key conclusion of this section, we need
to make a detour back to the reader’s earliest encounters with statistics: suppose we have a
random sample y1, . . . , yN taken from an infinite population with mean m and variance σ 2.
The mean of this sample is ȳN = (1/N )

∑n
i=1 yi . This sample mean is of course itself a ran-

dom variable, with expectation m and variance σ 2/N . Furthermore, the central limit theorem
states that whatever the distribution of yi might be, the distribution of ȳN tends to a normal
distribution as N → ∞.

These results may be summarized as

lim
N→∞

ȳN ∼ N (m, σ 2/N ) or lim
N→∞

N ȳN = lim
N→∞

(y1 + · · · + yN ) ∼ N (m N , σ 2 N )

the sign ∼ means “is distributed as” while N (m, ν2) indicates the normal distribution with
mean m and variance ν2. Applying this last result to equation (3.1) gives the very general result

xT = lim
N→∞; δT →0

(r1 + · · · + rN ) ∼ N
(
mδT N , σ 2

δT N
) = N (mδT N , σ 2δT N ) = N (mT, σ 2T )

We can reassure ourselves that this result holds simply by notionally slicing the time period
into an arbitrarily large number of arbitrarily small segments so that N → ∞ and the central
limit theorem holds true.

Finally, an important piece of jargon: if a random variable takes its various values
r1, r2, . . . , rN at successive points in time, it is referred to as a stochastic variable.

3.2 PROPERTIES OF STOCK PRICE DISTRIBUTION

In the last section we defined xT = ln ST /S0 and showed that xT is normally distributed with
mean mT and variance σ 2T . ST is then said to be lognormally distributed. Some of the more
useful properties of the normal and lognormal distributions are explained in Appendix A.1.

(i) In terms of xt , the stock price is given by St = S0 ext and the explicit probability distribution
function for xt is

n(xt ) = 1

σ
√

2π t
exp

{
−1

2

(
xt − mt

σ
√

t

)2
}
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The various moments for the distribution of St may be written

E

[(
St

S0

)λ
]

= E[eλxt ] =
∫ +∞

−∞
eλxt n(xt ) dxt

= eλmt+ 1
2 λ2σ 2t (3.3)

This result is proved in Appendix A.1(v), item (D).

(ii) Mean and Variance of ST : The rate of return µ of a non-dividend-paying stock over a time
interval T is defined by E 〈ST 〉 = S0 eµT . Using equation (3.3) with λ = 1 gives

E[ST ] = S0 eµT = S0 e(m+ 1
2 σ 2)T (3.4)

A relationship which simply falls out of the last equation and which is used repeatedly through-
out this book is

µ = m + 1
2σ 2 (3.5)

Again using equation (3.3), this time with λ = 2, gives

var

[
ST

S0

]
= E

[
ST

S0

]2

− E2

[
ST

S0

]

= e2µT
(
eσ 2T − 1

)
(3.6)

(iii) Variance and Volatility: xT is a stochastic variable with mean mT and variance σ 2T . T is
measured in units of a year and σ is referred to as the (annual) volatility of the stock. The
reader would be quite right to comment that σ should be called the volatility of the logarithm
of the stock price; but the two are closely related and for most practical purposes, the same. To
see this, consider a small time interval δT (maybe a day or a week) and write SδT − S0 = δS.
Then

var

[
ln

SδT

S0

]
= var

[
ln

(
1 + δS

S0

)]
≈ var

[
δS

S0

]
= var

[
1 + δS

S0

]
= var

[
SδT

S0

]

where the approximation uses the following standard Taylor expansion for small a: ln(1 + a) =
a − 1

2 a2 + 1
3 a3 − · · · and we use var[constant + x] = var〈x〉. The conclusion is that for small

time steps, the variance of ST /S0 and of ln(ST /S0) are the same.
In practical terms this means that if we estimate volatility from historical stock price data,

measuring either daily or weekly price movements, then we get more or less the same result
by using either the stock prices themselves or their logarithms. However, these two measures
are likely to produce appreciably different results if we use quarterly data.

(iv) In Section 3.1 it was established that xt = ln (St/S0) ∼ N (mT, σ 2T ) where m = µ − 1
2σ 2.

We define a standard normal variate zt by zt = (xt − mt)/σ
√

t so that zt is distributed as
zt ∼ N (0, 1). This can be inverted as xt = mt + σ

√
t zt , or equivalently

St = S0 emt+σ
√

t zt = S0 emt+σ Wt (3.7)

(v) It is worth pondering this last equation for a moment to get an appreciation of what is really
meant. The quantity

√
t zt is usually written Wt and the study of its mathematical properties
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3 Stock Price Distribution

has filled many textbooks; but for the moment, it is enough just to understand the big picture.
Wt is said to describe a one-dimensional Brownian motion. Brown was the nineteenth century
botanist who, studying pollen grains suspended in a liquid, was surprised to observe their
erratic movements, caused (as was later discovered) by the buffeting they received from the
impact of individual molecules. Most people find it helpful to think of Wt in terms of the
physical movement of a particle, rather than the more abstract movement of the logarithm of
a stock price. Strictly speaking, we should think of a particle moving backwards and forwards
along a one-dimensional line.

Suppose that at time t = 0 the particle starts at position W0 = 0. The movement is random
so we do not know where the particle will be after time T. We merely know the probability
distribution of Wt . Let us look at a couple of examples.

zt is a standard normal variate, i.e. with mean 0 and variance 1. From standard tables we know
that

Pr[−2 < zT < +2] ≈ 95%

� Example 1: T = 2 years

Pr

[
−2 <

W2 years√
2

< +2

]
= 95%

Pr[−2.8 < W2 years < +2.8] = 95%

� Example 2: T = 1 week

Pr

[
−2 <

W1 week√
1/52

< +2

]
= 95%

Pr[−0.28 < W1 week < +0.28] = 95%

The quantity Wt could take more or less any value. We know that it is proportional to
√

t ,
but the value could be positive or negative, large or small. Remember that zt is a standard
normal variate: z1000 and z0.0001 are merely two readings from the same distribution and there
is nothing to suggest that one should be larger or smaller than the other.

(vi) Continuous Dividends: In Section 1.1 it was seen that a continuous dividend could be accounted
for by making the substitution S0 → S0 e−qt for the stock price. The distribution for St at the
beginning of this section can therefore be described by

ln
St

S0
→ ln

St

S0 e−qt
= ln

St

S0
+ qt ∼ N (mt, σ 2t)

But if ln(St/S0) + qt is normally distributed with mean mt and variance σ 2t , the term qt merely
shifts the mean of the distribution so that

ln(St/S0) ∼ N ((m − q)t, σ 2t)

The effect of a continuous dividend rate q can therefore be taken into account simply by making
the substitutions m → m − q and µ → µ − q .
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3.3 INFINITESIMAL PRICE MOVEMENTS

(i) Let us return to equation (3.7) for the stock price evolution, and consider only small time
intervals δt . We may write that equation as

St + δSt = St emδt+σδWt where δWt =
√

δt zδt

We are dealing with small time periods and small price changes so that we may use the standard
expansion ea = 1 + a + 1

2! a
2 + · · · in the last equation, giving

St + δSt = St
{
1 + (mδt + σδWt ) + 1

2 (mδt + σδWt )2 + · · ·}
Normally, one might expect to drop the squared and higher terms in this equation; but recall
the definition δWt = √

δt zδt . The term zδt is a standard normal variate, taking the values −1
to +1 for about 67% of the time; values −2 to +2 for about 95% of the time; values −3 to +3
for about 99.5% of the time, etc. δWt is therefore not of the same order as δt (written O[δt]); it
is O[

√
δt]. To be consistent in the last equation then, we need to retain terms up to δt together

with terms up to δW 2
t . This gives us

δSt

St
= mδt + σδWt + 1

2σ 2δW 2
t

(ii) An appreciation of the significance of the last term in this equation is obtained by analyzing
the following expectations and variances of powers of δWt . First, recall from Appendix A.1(ii)
that the moment generating function for a standard normal distribution is M[�] = e�2/2; the
various moments are given by µλ = E〈zλ〉 = ∂λM[�]

∂�λ ]�=0. Using this procedure we get

E[δWt ] = √
δt E[zδt ] = 0

var[δWt ] = E
[
δW 2

t

] = δt E
[
z2
δt

] = δt

var
[
δW 2

t

] = E
[
δW 4

t

]− E2
[
δW 2

t

] = δt2 E
[
z4
δt

]− δt2 = 2δt2

The quantity δW 2
t has expected value δt and variance proportional to δt2. Thus as δt → 0

the variance of δW 2
t approaches zero much faster than δt itself. But as the variance of δW 2

t
approaches zero, δW 2

t approaches its expected value with greater and greater certainty, i.e. it
ceases to behave like a random variable at all. This permits us to make the substitution

lim
δt→0

δW 2
t → E

[
δW 2

t

] = δt

(iii) Using equation (3.5), the process for the evolution of the stock price over a very small time
interval can be written

δSt

St
= mδt + σδWt + 1

2σ 2δt = µδt + σδWt (3.8)

With a continuous proportional dividend q this becomes

δSt

St
= (µ − q)δt + σδWt (3.9)

This representation has a great deal of appeal. The model has the stock price growing at a
constant rate µ, with random fluctuations superimposed. These fluctuations are proportional
to the standard deviation of the stock price and are dependent on a standard normal random
variable. This type of process is known as a Wiener process.
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3 Stock Price Distribution

For future reference, we quote an often used result obtained by squaring the last result and
dropping higher terms in δt :(

δSt

St

)2

= (µδt + σδWt )
2 ≈ σ 2δW 2

t → σ 2δt (3.10)

3.4 ITO’S LEMMA

In the last section it was seen that an infinitesimal stock price movement δSt in an infinitesimal
time interval δt could be described by the Wiener process δSt = St (µ − q)δt + StσδWt . A
more generalized Wiener process (also known as an Ito process) can be written

δSt = aSt tδt + bSt tδWt

where aSt t and bSt t are now functions of both St and t. Consider any function fSt t of St and
t, which is reasonably well behaved (i.e. adequately differentiable with respect to St and t).
Taylor’s theorem states that

δ ft = ∂ ft

∂St
δSt + ∂ ft

∂t
δt + 1

2

{
∂2 ft

∂S2
t

δS2
t + ∂2 ft

∂St∂t
δStδt + ∂2 ft

∂t2
δt2

}
+ · · ·

where the subscript notation has been lightened a little for the sake of legibility. Substitute for
St from the generalized Wiener process and retain only terms of order δt or lower, remembering
that δWt ∼ O[

√
δt]:

δ ft = ∂ ft

∂St
δSt + ∂ ft

∂t
δt + 1

2

∂2 ft

∂S2
t

b2
t δW 2

t

Put δW 2
t → δt as explained in Section 3.3, to give

δ ft =
(

∂ ft

∂t
+ at

∂ ft

∂St
+ 1

2
b2

t

∂2 ft

∂S2
t

)
δt + bt

∂ ft

∂St
δWt (3.11)

This result is known as Ito’s lemma and is one of the cornerstones of option theory. It basically
says that if ft is any well-behaved function of an Ito process and of time, then ft itself follows
an Ito process. The function of particular interest in this book is the price of a derivative.

In the case of the simple Wiener process of equation (3.9), Ito’s lemma becomes

δ ft =
(

∂ ft

∂t
+ (µ − q)St

∂ ft

∂St
+ 1

2
σ 2S2

t

∂2 ft

∂S2
t

)
δt + σ St

∂ ft

∂St
δWt (3.12)
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4

Principles of Option Pricing

This is the most important chapter in the book and needs to be mastered if the reader is to
get a firm grasp of option theory. We start with a simple, stylized example. These examples
are often irritating to new students of derivatives who regard them as toy models with little
relevance to real-life financial problems. However, the reader is strongly advised not to dis-
miss them. Firstly, they allow concepts such as risk neutrality or pseudo-probabilities to be
introduced in a relatively painless way; introducing such concepts for the first time in a more
generalized or continuous context is definitely harder on the reader – trust me. Secondly, as will
be demonstrated in a few chapters, simple models which allow only two outcomes can easily
be generalized into powerful computational tools which accurately represent real financial
markets.

4.1 SIMPLE EXAMPLE

(i) Suppose a company is awaiting a crucially important yes/no decision from a government
regulator, to be announced in one month. The outcome will radically alter the company’s
future in a way which is predictable, once we know which way the decision goes. If the
decision is “yes”, the stock price will rise to Shigh but for a “no” the price will fall to Slow.

Obviously, Shigh and Slow must be above and below the present stock price S0 (if they were
both above, S0 would rise immediately). Let us further assume that everyone knows that given
the political climate, the yes probability is 70% and the no probability 30%.

We are equity derivatives investors and are holding an unquoted option on this company’s
stock which matures immediately after the announcement. The payoff of the option is f1 month,
which takes values fhigh or flow depending on whether the stock price becomes fhigh or Slow.
How would we go about working out today’s value for this option?

(ii) Considering first the stock price itself, the expected value in one month and the expected growth
rate over that month µ are defined by

E [S1 month] = 0.7Shigh + 0.3Slow = (1 + µ)S0 (4.1)

At the risk of emphasizing the obvious, let us be clear on this point: µ is definitely not the
rate by which S0 will grow, since the final stock price will be either Shigh or Slow. It is the
mathematical expectation of the stock price growth. In this example we can work out µ from
our knowledge of the probabilities of yes and no; alternatively, if we knew µ at the beginning,
we could work out the probabilities.

The expected value for f1 month is similarly given by

E[ f1 month] = 0.7 fhigh + 0.3 flow

which we can evaluate since we know the payoff values. It should not be too hard to calculate
the present value, but how? The simplest way might be just to discount back by the interest
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rate, but remember that this is only valid for finding the present value of some certain future
amount; for a risky asset, we must discount back by the rate of return (growth rate) of the
particular asset. This is clear from the slightly rewritten equation (4.1):

S0 = E[S1 month]

(1 + µ)

Maybe the answer is to use (1 + µ) as the discount factor; but µ is the growth rate of
the underlying equity stock, not the option. There is nothing to suggest that the expected
growth rate of the stock µ should equal the expected growth rate of the option λ. Nor is
there any simple general way of deriving λ from µ. This was the point at which option
theory remained stuck for many years. At this point, we enter the world of modern option
theory.

(iii) Instead of trying to value the option, let us switch our attention to another problem. We could
lose a lot of money on the derivative in one month if the stock price moves against us. Is it
possible to hedge the option against all risk of loss?

Suppose there were some quantity of stock 	 that we can short, such that the value of the
option plus the short stock position is the same in one month, whether the stock price goes
up or down. Today’s value of this little portfolio consisting of option plus short stock position
is written f0 − S0	. Note the convention whereby f0 is the price of an option on one share
of stock, and 	 is some negative or positive number which will probably not be an integer.
Obviously you cannot buy or short fractions of an equity stock, but the arguments would
be exactly the same if we multiplied everything by some number large enough that we only
consider integral amounts of stock and derivatives; it is simply easier to accept the convention
of fractional 	.

If this little portfolio is to achieve its stated aim of having the same value in one month
whichever outcome occurs, we must have

fhigh − Shigh	 = flow − Slow	

or rearranging

	 = fhigh − flow

Shigh − Slow

We have not yet managed to calculate a value for f0, but we have devised a method of hedging
the position. Note that this makes no reference to λ or µ, the growth rates of the derivative and
the underlying stock.

(iv) Saying that the derivative is hedged is precisely the same as saying that the value of the portfolio
of derivative plus stock is certain and predictable. Its value today is f0 − S0	 and its value
in one month is f1 month − S1 month	, which is the same whether the stock goes up or down.
In Section 1.2 we saw that the return on a perfectly hedged portfolio must be the risk-free
rate

f1 month − S1 month	

f0 − S0	
= 1 + r
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or

( f1 month − f0) + r S0	 − (S1 month − S0)	 = r f0 (4.2)

This is expressed in terms of the general quantities f1 month and S1 month; more specifically, we
can write

fhigh − Shigh	 = flow − Slow	 = (1 + r )( f0 − S0	)

A little algebra yields

(1 + r ) f0 = p fhigh + (1 − p) flow (4.3)

where

p = (1 + r )S0 − Slow

Shigh − Slow

or alternatively

(1 + r )S0 = pShigh + (1 − p)Slow (4.4)

(v) Let us take a moment to contemplate the last couple of equations. The parameter p is defined
by equation (4.4). This is just a number which is made up of a combination of the observable
quantities S0, Shigh, Slow and r . As was pointed out previously, Shigh and Slow lie above and below
S0 so that p takes values between 0 and 1. Compare equations (4.1) and (4.4): the first illustrates
the connection between the expected return and the probabilities of the stock price moving to
Shigh or Slow. The second is rather similar in form, but in place of the expected growth rate µ

for the stock, it has the risk-free interest rate r; and in place of the probabilities 0.7 and 0.3 it
has the numbers p and (1 − p), which have values between 0 and 1. These numbers are called
pseudo-probabilities, but are not of course the real probabilities of any outcome. Suppose there
exists some fantasy world where people are all insensitive to risk. In such a risk-neutral world,
everybody would be content to receive the risk-free rate r on all their investments. Equations
(4.3) and (4.4) would then be equations which connect r, the expected return on both the stock
and the derivative, to the probabilities of Shigh or Slow being achieved. But remember, this is
only a fantasy world and does not describe what is going on in the real world. As the reader
becomes more familiar with option theory, he will find that the concept of risk neutrality is a
very useful tool in working out option prices; but he must remember that this is only an intellec-
tual construction which is a useful way of remembering computational rules. He must not drift
into the common trap of forgetting precisely where the real world ends and the fantasy world
begins.

(vi) These distinctions are best illustrated with a step-by-step comparison of a derivative pricing
in the real world and in a risk-neutral world.
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REAL WORLD RISK-NEUTRAL WORLD

1. We start with a knowledge of the true prob-
abilities (0.7 and 0.3 in our example). Al-
ternatively, if we only know the expected
growth rate we use equation (4.1):

(1 + µ)S0 = 0.7Shigh + 0.3Slow

2. The probabilities of achieving Shigh and
Slow are just the same as achieving fhigh and
flow. The true expected value of f1 month is

E[ f1 month]real world = 0.7 fhigh + 0.3 flow

3. The present expected value of the deriva-
tive is given by discounting the future ex-
pected value by λ, the expected growth rate
of the derivative:

f0 = 1

(1 + λ)
E[ f1 month]real world

4. Unfortunately, neither µ nor λ are known
in most circumstances so this method is
useless.

Calculate the pseudo-probabilities from equa-
tion (4.4) :

(1 + r )S0 = pShigh + (1 − p)Slow

Pretend that the probabilities of achiev-
ing Shigh and Slow (and therefore also fhigh

and flow) are the pseudo-probabilities. The
pseudo-expectation is then

E [ f1 month]pseudo = p fhigh + (1 − p) flow

Equation (4.3) shows that f0 is just
E[ f1 month]pseudo discounted back at the inter-
est rate:

f0 = 1

(1 + r )
E[ f1 month]pseudo

This allows us to obtain f0 entirely from ob-
servable quantities.

Astonishingly, we have suddenly found a way of calculating f0 in terms of known or
observable quantities, yet only a page or two back, it looked as though the problem was
insoluble since we had no way of calculating the returns µ and λ. The log-jam was broken by
an arbitrage argument which hypothesized that an option could be hedged by a certain quantity
of underlying stock. The principle is exactly the same as for a forward contract, explained in
Section 1.3. Remember, this approach can only be used if the underlying commodity can be
stored, otherwise the hedge cannot be set up: equities, foreign exchange and gold work fine,
but tomatoes and electricity need a different approach; this book deals only with the former
category.

4.2 CONTINUOUS TIME ANALYSIS

(i) The simple “high–low” example of the last section has wider applicability than a reader might
expect at this point. However this remains to be developed in Chapter 7, and for the moment
we will extend the theory in a way that describes real financial markets in a more credible way.
Following the reasoning of the last section, we assume that we can construct a little portfolio
in such a way that a derivative and −	 units of stock hedge each other in the short term. Only
short-term moves are considered since it is reasonable to assume that the 	 units of short stock
position needed to hedge one derivative will vary with the stock price and the time to maturity.
Therefore the hedge will only work over small ranges before 	 needs to be changed in order
to maintain the perfect hedge.
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4.2 CONTINUOUS TIME ANALYSIS

The value of the portfolio at time t may be written ft − St	. The increase in value of this
portfolio over a small time interval δt , during which St changes by δSt , may be written

δ ft − St	 − St q	δt

The first two terms are obvious while the last term is just the amount of dividend which we must
pay to the stock lender from whom we have borrowed stock in the time interval δt , assuming
a continuous dividend proportional to the stock price.

The quantity 	 is chosen so that the short stock position exactly hedges the derivative over
a small time interval δt ; this is the same as saying that the outcome of the portfolio is certain.
The arbitrage arguments again lead us to the conclusion that the return of this portfolio must
equal the interest rate:

δ ft − δSt	 − St q	δt

ft − St	
= rδt

or

δ ft − δSt	 + (r − q)St	δt = r ftδt (4.5)

These equations are the exact analogue of equations (4.2) for the simple high–low model of
the last section.

(ii) As they stand, equations (4.5) are not particularly useful. However, it is assumed that St follows
a Wiener process so that small movements are described by the equation

δSt

St
= (µ − q)δt + σδWt

We can now invoke Ito’s lemma in the form of equation (3.12) and substitute for δ ft and δSt

into the first of equations (4.5) to give(
∂ f1

∂t
+ (µ − q)St

∂ ft

∂St
+ 1

2
σ 2S2

t

∂2 ft

∂S2
t

)
δt + σ St

∂ ft

∂St
δWt

−St [(µ − q)δt + σδWt ]	 − St q	δt = ( ft − St	)rδt (4.6)

Recall that the left-hand side of this equation is the amount by which the portfolio increases in
value in an interval δt ; but by definition, this amount cannot be uncertain in any way because
the derivative is hedged by the stock. Therefore it cannot be a function of the stochastic
variable δWt , which means that the coefficient of this factor must be equal to zero. This
gives

∂ ft

∂St
= 	 (4.7)

We return to an examination of the exact significance of this in subsection (vi) below.

(iii) Black Scholes Differential Equation: Setting the coefficient of δWt to zero in equation (4.6)
leaves us with the most important equation of option theory, known as the Black Scholes
equation:

∂ ft

∂t
+ (r − q)St

∂ ft

∂St
+ 1

2
σ 2S2

t

∂2 ft

∂S2
t

= r ft (4.8)
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Any derivative for which a neutral hedge can be constructed is governed by this equation;
and all formulas for the prices of derivatives are solutions of this equation, with boundary
conditions depending on the specific type of derivative being considered. The immediately
remarkable feature about this equation is the absence of µ, the expected return on the stock,
and indeed the expected return on the derivative itself. This is of course the continuous time
equivalent of the risk-neutrality result that was described in Section 4.1(iv).

When the Black Scholes equation is used for calculating option prices, it is normally pre-
sented in a more directly usable form. Generally we want to derive a formula for the price of
an option at time t = 0, where the option matures at time t = T . Using the conventions of
Section 1.1(v), we write ∂ f0/∂t ⇒ −∂ f0/∂T so that the Black Scholes equation becomes

∂ ft

∂T
= (r − q)St

∂ ft

∂St
+ 1

2
σ 2S2

t

∂2 ft

∂S2
t

− r ft (4.9)

(iv) Differentiability: For what is a cornerstone of option theory, the Black Scholes differential
equation has been derived in a rather minimalist way, so we will go back and examine some
issues in greater detail. First, we need to look at some of the mathematical conditions that must
be met.

It is clear from any graph of stock price against time that St is not a smoothly varying function
of time. It is really not the type of function that can be differentiated with respect to time. So
just how valid is the analysis leading up to the derivation of the Black Scholes equation? This
is really not a simple issue and is given thorough treatment in Part 4 of the book; but for the
moment we content ourselves with the following commonsense observations:

� St and the derivative price fSt t are both stochastic variables. In this subsection we explicitly
show the dependence of fSt t on St for emphasis.

� Both St and fSt t are much too jagged for dSt/dt or for d fSt t/dt to have any meaning at all, i.e.
in the infinitesimal time interval dt , the movements of δSt and δSSt t are quite unpredictable.

� However, partial derivatives are another matter. If you know the time to maturity and the
underlying stock price, there is a unique value for a given partial derivative. These values
might be determined either by working out a formula or by devising a calculation procedure;
but you will be able to plot a unique smooth curve of fSt t vs. St for a given constant t, and
also a unique curve for fSt t vs. t for a given constant St .

� The derivation of the Black Scholes equation ultimately depends on Ito’s lemma which
in turn depends on a Taylor expansion of fSt t to first order in t and second order in St .
Underlying this is the assumption that the curves for fSt t against t and St are at least once
differentiable with respect to t and twice differentiable with respect to St .

� A partial derivative is a derivative taken while holding all other variables constant. d fSt t/dt
and ∂ fSt t/∂t mean quite different things. Consider the following standard result of differential
calculus:

d fSt t

dt
≡ ∂ fSt t

∂t
+ ∂ fSt t

∂St

∂St

∂t

We have already seen that the first two partial derivatives on the right-hand side of this
identity are well defined. However ∂St/∂t is just a measure of the rate at which the stock
price changes with time, which is random and undefined; thus d fSt t/dt is also undefined.

� In pragmatic terms, this is summed up as follows: we know that the stock price jumps around
in a random way and therefore cannot be differentiated with respect to time; the same is
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true of the derivative price. However, the derivative price is a well-defined function of the
underlying stock price and can therefore be differentiated with respect to price a couple of
times. The derivative price is also a well-defined function of the maturity, so that it can be
partially differentiated with respect to time, while holding the stock price constant.

(v) The concept of arbitrage is the foundation of option theory. It has been assumed that we
can construct a little portfolio consisting of a derivative and a short position of 	St t units of
stock, such that the short stock position exactly hedges the derivative for any small stock price
movements; this is referred to as an instantaneous hedge. The dependence of 	St t on the stock
price is explicitly expressed in the notation. This portfolio has a value which may be written

VSt t = fSt t − 	St t St (4.10)

The fact that the short stock position hedges the derivative does not mean that the movement in
one is equal but opposite to the movement in the other: it merely means that the move in VSt t is
independent of the size of the stock price move δSt over a small time interval δt . The normal
sign conventions are followed when interpreting the last equation, e.g. if fSt t is negative, a
short option position (option sold) is indicated; if 	St t is negative, so that −	St t St is positive,
a long position is taken in the stock.

At this point it needs to be made clear that there are alternative (but equivalent) conventions
used in describing instantaneous hedging. The reader needs to be at home with the different
ways of looking at the problem since the approaches in the literature are quite random, with
authors sometimes switching around within a single article or chapter.

Hedging: In equation (4.10), VSt t is the value of the portfolio and is therefore the amount
of money paid out or received in setting up the portfolio; but we normally look at the set-up
slightly differently. It is easier to keep tabs on values if it is assumed that we start any derivatives
exercise with zero cash. If we need to spend cash on a portfolio, we obtain it by borrowing
from a so-called cash account; alternatively, if the portfolio generates cash, we deposit this in
the same cash account. Equation (4.10) may then be written

BSt t + fSt t − 	St t St = 0 (4.11)

where BSt t is the level of the cash account, negative for borrowings and positive for deposits.
Except where explicitly stated otherwise, it is assumed that interest rates are constant.

Replication: While option theory can be developed perfectly well with the above conventions,
many students find it easier to picture the set-up slightly differently. Rewrite equation (4.10)
as follows:

fSt t = 	St t St + BSt t (4.12)

Instead of thinking in terms of hedging this can be interpreted as representing a replication.
We would say that within a very small time interval, a derivative whose price is fSt t behaves
in the same way as a portfolio consisting of 	St t units of stock and BSt t units of cash. In this
approach it is again assumed that we start with zero wealth so that any cash needed has to be
borrowed (indicated by negative BSt t ) and any surplus cash is deposited (indicated by positive
BSt t ). For example, 	St t St is always positive for a call option and always larger than fSt t , so
BSt t is always negative, indicating a cash borrowing. On the other hand, 	St t is negative for a
put option, indicating that the replication strategy requires a short stock position and that BSt t

is positive, i.e. surplus cash is generated by the process.
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4 Principles of Option Pricing

Replication is perhaps more intuitive as an approach, but people with a trading background
tend to be more comfortable with the hedging for obvious reasons. One point which sometimes
causes puzzlement should be mentioned: equations (4.11) and (4.12) seem to express the same
idea, so where does the sign change in the BSt t term come from? The answer is that the
two equations do not represent quite the same thing. In fact hedging an option might be
best described as replicating a short option, rather than the option itself. It is completely
straightforward to develop option theory using either approach, but the reader is warned that
mistakes are likely to occur if it is not absolutely clear which method is being used at a given
time.

To illustrate this alternative approach, we now recast the analysis leading up to the Black
Scholes equation in terms of replication rather than hedging. The option can be replicated by a
portfolio of stock and cash: ft = 	t St + Bt , where once again we ease the notation by using
the suffix t to indicate dependence on both t and St . In a small time interval, the change in
value is given by

δ fSt t = 	St tδSt + 	St t St qδt + BSt trδt

The middle term on the right-hand side is again the dividend throw-off, while the last term
is just the interest earned or incurred on the cash account. Substituting for Bt from equation
(4.12) gives

δ ft = 	tδSt + 	t St qδt + ( ft − 	t St )rδt (4.13)

which is just equation (4.5). The rest of the argument is the same as before, leading directly to
the Black Scholes differential equation.

(vi) Graphical Representation of Delta: In the derivation of the Black Scholes equation (4.7), an
important aspect emerged and was quickly passed over. We now return to the equation

∂ ft

∂St
= 	

In the spirit of the last subsection, we assume that we can obtain a formula for ft as a function
of St ; the curve of this function is shown in Figure 4.1. This illustrates the replication approach
to studying options which was described in the last section.

	 is clearly the slope of the curve of fSt t and the equation of the tangent to the curve is
y = 	St t St + B where B is some as yet to be defined point on the y-axis. Over a very small
range δSt , the properties of the curve (derivative) can be approximated by those of the tangent
(replication portfolio). This is completely in line with the precepts of differential calculus.
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Figure 4.1 Delta
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(vii) Risk Neutrality in Continuous Time: Let the expected return on an equity stock be µ and the
return on a derivative be λ. The Wiener process governing the stock price movements is

δSt

St
= (µ − q)δt + σdWt

and by definition

E[δ ft ]

ft
= λδt

Using Ito’s lemma [equation (3.12)] for δ ft gives

E

[{
∂ ft

∂t
+ (µ − q)St

∂ ft

∂St
+ 1

2
σ 2S2

t

∂2 ft

∂S2
t

}
δt + σ St

∂ ft

∂St
δWt

]
= λ ftδt

Now use E[δWt ] = 0 for the only stochastic term in the last equation to give

∂ ft

∂t
+ (µ − q)St

∂ ft

∂St
+ 1

2
σ 2S2

t

∂2 ft

∂S2
t

= λ ft

This is not of much use in pricing derivatives since we have no way of finding µ or λ. However,
suppose we now get onto our magic carpet and fly back to the fantasy world described in the
last section, where investors are insensitive to risk and therefore accept a risk-free rate of return
r on all investments including our derivative and its underlying stock. We would then be able to
put µ = λ = r in the last equation to retrieve the Black Scholes equation which can be solved
in terms of observable quantities.

This result is just the continuous time equivalent of the result which was obtained for
the simple high/low model of Section 4.1. The no-arbitrage condition again leads us to the
conclusion that an option price computed in the risk-neutral imaginary world would have the
same value as an option price computed in the real world, if we happened to know the values
of µ and λ. We can formally write this result as

fS00 = e−λt E[ fSt t ]real world

fS00 = e−r t E[ fSt t ]risk-neutral world

(viii) Approaches to Option Pricing: The main purpose of the preceding theory is to find a way of
pricing options. Two approaches have emerged from this chapter: we derived the Black Scholes
equation which applies to any derivative of a stock price. The option price can therefore be
obtained by solving this equation subject to the appropriate boundary conditions. The main
drawback of this approach is that the equation is very hard to solve analytically in most cases.
A later chapter will be dedicated to finding approximate numerical solutions to the equation.

In Section 3.1 the central limit theorem was used to derive a probability distribution function
for the stock price in time St . This was a function of µ, the stock’s rate of return. But in the last
subsection it was shown that the option may be priced by first making the substitution µ → r
and deriving a pseudo-distribution for St (i.e. the distribution St would have if µ were equal
to r). From this pseudo-distribution and a knowledge of the payoff function of the option, a
pseudo-expected terminal value can be calculated for the option; if this is discounted back at
the risk-free rate r, we get the true present fair value of the option.

On the face of it, this seems the simpler approach; it certainly is for simple options, but it
will become apparent later in this course that the probability distribution can be very difficult
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to derive in more complex cases. In fact it is shown in Appendix A.4(i) that deriving a formula
for the probability density function is mathematically equivalent to solving the Black Scholes
equation.

Other powerful approaches to option pricing are developed later in this book, but for the
moment we concentrate on these methods. They are applied to simple European put and call
options in the next chapter, but for the moment we continue with the development of the general
theory which will be applied throughout the rest of the book.

4.3 DYNAMIC HEDGING

In the first section of this chapter we considered a simple one-step model with two possible
outcomes. Then in the following section we turned our attention to a more general, continuous
model, but we still only considered a single short step δSt over a period δt . These models not
only gave insights into a general approach for solving previously intractable problems (risk
neutrality); they also yielded the fundamental differential equation governing all options. We
now extend the analysis from one to two steps and in the process we derive the central result
which underlies the whole of the modern options industry.

(i) Beginning of First Step: We buy an option and hedge it with delta units of the underlying
stock. We start with zero wealth so any cash surplus or deficit is borrowed or deposited with a
bank. We have already seen from equation (4.11) that our position may be represented by

fSt t − 	St t St + BSt t = 0 (4.14)

Consider two concrete examples

� A call option valued at 10 when the stock price is 100 which has a delta of 0.5. The delta
of the call is positive so the hedge is to short stock. Putting numbers into the last equation
gives

10 − 0.5 × 100 + BSt t = 0 or BSt t = +40

Shorting the stock means borrowing stock and selling it. This process generates 50 of cash
but the option cost us 10; the net of the two is a cash surplus of 40 which we place on
deposit.

� A put option worth 10 when the stock price is 100; delta is −0.5. The delta of a put is
negative, so the hedge is to buy stock. Our equation now becomes

10 + 0.5 × 100 + BSt t = 0 or BSt t = −60

This time we buy the option for 10 but also need to spend 50 on the stock hedge. Our total
outlay is 60 which needs to be borrowed.

(ii) End of First Step: Having set up the portfolio described by equation (4.14), we now wait for a
period of time δt to elapse and then go back to see what happened. The situation is described
by a new equation:

fSt +δSt t+δt − 	St t (St + δSt ) − 	St t St qδt + BSt t (1 + rδt) = 0 (4.15)

� The value of the option changed to fSt +δSt t+δt = fSt t + δ fSt t because the stock price and
the time to maturity changed.

� 	St t was the number of shares we held or shorted, and this did not change over the period δt .
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4.3 DYNAMIC HEDGING

� The stock price changed to St+δt = St + δSt over the same period.
� Dividends of 	St t St qδt would have been received on a long stock or paid on a short stock

position.
� The cash account accrued an amount of interest BSt trδt in the period.

The portfolio was constructed to be hedged so there could not have been a stochastic jump
in wealth. We started at t with nothing, so by the arbitrage principle expressed in the form of
proposition 1.2(i), we have nothing at t + δt ; so all the above terms taken together must equal
zero.

Subtracting equation (4.14) from equation (4.15) gives

δ fSt t − 	St tδSt + (BSt tr − 	St t St q)δt = δ fSt t − 	St tδSt + 
δt = 0 (4.16)

The term 
tδt is usually called the financing costs. It is just the cash flows which result from
the interest rate and dividend flows, positive if received by us and negative if paid out. This
equation may be stated alternatively: over a single hedged time period δt , the change in the
value of the derivative and hedge, net of financing costs, is zero.

(iii) Beginning of Second Step: Having moved to time t + δt where the stock price is St + δSt , the
stock position no longer hedges the derivative perfectly. The reason is that delta has changed
slightly. We wish to remain hedged for a further period δt so we change the delta by buying or
selling some shares and establish a new, perfectly hedged portfolio corresponding to a stock
price St + δSt and time t + δt . The equation corresponding to equation (4.3) is now

fSt +δSt t+δt − 	St +δSt t+δt (St + δSt ) + BSt +δSt t+δt = 0 (4.17)

Again, the left-hand side of this equation is set to zero since arbitrage ensures that our total
wealth is always equal to zero. In order to see how the cash account moves when the hedge is
rebalanced, subtract equation (4.15) from equation (4.17):

−(	St +δSt t+δt − 	St t )(St + δSt ) + (BSt +δSt t+δt − BSt t ) − (BSt tr − 	St t St q)δt = 0

Simplifying the notation gives

δBt = 
tδt + δ	t St+δt (4.18)

The relationship expressed by this equation is known as the self-financing condition. It is of
course totally intuitive (not to say self-evident). In a single period including one rebalancing,
the cash flows come from only two sources: the financing costs and the cost of rebalancing the
hedge. In other words, our system of derivative, stock and cash account is self-contained: we
do not let cash seep in or out.

The above steps may be repeated at successive time intervals δt , when we repeatedly readjust
the hedge by buying or selling shares (changing the delta). The procedure is known as dynamic
hedging. The values of the deltas which are needed at each step may be obtained from an option
model such as the Black Scholes model of the next chapter.

(iv) Basis of Option Trading: Returning to our zero-value portfolio of equation (4.14), it is clear
that however many times one rebalances the hedge, arbitrage arguments dictate that the value
of the portfolio must always remain at zero. At the maturity of the option we must therefore
also have

fST T − 	ST T ST + BST T = 0
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4 Principles of Option Pricing

This looks obvious to the point of being banal, but let us pause for a moment to reflect on what
it implies.

Suppose we have somehow been given a call option, but know nothing about option theory;
we would have to wait until maturity and see what the payoff is. But suppose instead that
we know option theory: specifically, we are able to calculate the value of a call option as a
function of stock price and time to maturity; hence we are also able to calculate the delta, its
first derivative. The option position is managed as follows.

Set up a portfolio consisting of the following:

� The call option, whose fair value fS00 can be calculated from our knowledge of option theory
and the current price of the underlying stock.

� A short position in 	S00 units of stock. Again, we know how to calculate 	S00, so we borrow
this amount of stock in the repo market and sell it to yield 	S00S0 in cash.

� We divide the cash sum into two sums: fS00 is placed in a “value account” and 	S00S0 −
fS00 = BS00 is placed in the “portfolio account”; both accounts bear interest.

The portfolio contains (i) the call option, (ii) the obligations under the stock borrowing and
(iii) the “portfolio account”. Its value is fS00 − 	S00S0 + BS00 = 0 at the beginning and if we
continuously vary 	St t so that the option is perfectly hedged at all times, then its value is also
zero at the end. All we are left with then is the “value account” which has accumulated interest
to become fS00 erT. By dynamically hedging, we have locked in the value of the option from
the beginning, rather than having to rely on an uncertain payoff.

The implications of this for the options industry are enormous. For example, we can sell
an option without taking an unknown exposure to stock price movements. If we dynamically
hedge this short option position, the hedging process (buying or selling stock and financing
costs) will generate a cash sum equal to the fair price of the option sold. Or if we buy an option
which is underpriced, we can generate the fair value of the option through a delta hedging
procedure and consequently lock in the profit.

The mechanics of what precisely causes this to happen is explained in Section 4.5. However,
we first look at a concrete example of delta hedging and its associated cash flows.

4.4 EXAMPLES OF DYNAMIC HEDGING

(i) The theory developed in the last section called for rebalancing of the hedge at infinitesimally
small time intervals, but this is obviously not possible in practice. The example we consider
is a 1-year call option for which we rebalance the hedge once a month; in real life, we would
rebalance the hedge more often. The columns of Table 4.1 are as follows.

(A) St : Assuming the stock price starts at 100, we have generated a scenario of stock prices
after 1 month, 2 months, . . . , 12 months. These values are calculated from equation (3.7),
making the risk-neutral substitution m = (r − q) − 1

2σ 2. In this particular example, we
have taken r = 6%, q = 3%, σ = 25% so that

Smonth i+1 = Smonth i exp

{
3% × 1

12
− 1

2
× (25%)2 + 25% ×

√
1

12
zi+1

}

where zi+1 is a random variable drawn from a standard normal population. Such variables
are easy to generate in a spreadsheet using formulas discussed in Chapter 10. An infinite
number of paths can be generated in this column simply by pressing the button which
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Table 4.1 Dynamic hedge of a call option (in the money at maturity)

St 	St t fSt t 	St t × St BSt t

Jan 100.00 0.58 11.01 57.91 46.90
Feb 86.30 0.34 29.52 26.53
Mar 89.26 0.38 34.13 30.19
Apr 90.22 0.39 34.94 30.70
May 92.59 0.42 38.99 33.90
Jun 87.20 0.29 25.53 22.78
Jul 87.89 0.28 24.99 22.09
Aug 91.81 0.35 32.19 28.22
Sep 106.59 0.71 76.00 66.91
Oct 111.15 0.83 91.97 79.76
Nov 103.57 0.67 69.18 63.42
Dec 106.41 0.82 87.52 80.00
Jan 118.37 1.00 18.37 118.37 101.20

Final Liquidation Value of Portfolio 1.20

allocates the new set of random numbers for Tables 4.1 and 4.2. We have simply chosen
a couple of paths which are good illustrations of the present subject.

(B) 	St t : The deltas shown in the third column are calculated from the Black Scholes model
and correspond to the stock prices of column 2 and the time left to maturity.

The last three columns correspond to the portfolio fSt t − 	St t St + BSt t = 0, which as we have
seen should have value zero at every point in time. The first line of this part of the table is
constructed as follows.

(C) fS00 : On day 1, when the stock price is 100.00, we buy an option for its fair value of 11.01.
This fair value is obtained from the Black Scholes model.

(D) 	S00 × S0 : We have already calculated the delta, and this is the number of shares that is
shorted to hedge the option. The cash we receive as a result of this short is shown in this
column.

(E) BS00 : The amount of cash available for depositing in the cash account is the difference of
the last two items.

The remainder of the last three columns is filled in as follows.

(F) 	St t × St : Each month, observe the new share price and calculate an appropriate delta
(columns 2 and 3).

(G) The change in the cash account is the sum of three items:

� Interest on the cash surplus received for the previous month;
� Dividends on the stock borrowed in the previous month;
� Stock bought or sold to readjust the hedge.

Since the portfolio is hedged, the sum of the last three columns should be zero throughout.
However there is no need to recalculate the option price at each time step. At maturity, when
the stock price is 118.37, we would expect to have 100 in the cash account and a short position
of one share; the option value is the payoff of 18.37.
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4 Principles of Option Pricing

In our example, the numbers are close but not exact. The reason of course is that we
did not rebalance at infinitesimal intervals but at 1-month gaps. In fact, the results we have
used for illustration have been chosen to be fairly close; with hedging as infrequent as this,
the standard deviation of the mismatch between our results and the results obtained from
infinitesimal hedging is about 2.25, i.e. one third of the time the error will be greater than
2.25.

(ii) Table 4.2 is a repeat of the previous exercise with a stock price path which finishes out-of-the-
money for the option.

Table 4.2 Dynamic hedge of a call option (out of the money at maturity)

St 	St t fSt t 	St t St BSt t

Jan 100.00 0.58 11.01 57.91 46.90
Feb 96.31 0.52 49.74 40.96
Mar 103.82 0.63 65.90 53.32
Apr 106.59 0.68 72.31 58.07
May 102.78 0.62 63.56 52.01
Jun 97.06 0.50 48.87 40.96
Jul 88.59 0.30 26.56 22.99
Aug 91.04 0.33 30.19 25.95
Sep 86.65 0.20 16.92 14.18
Oct 75.39 0.02 1.22 0.71
Nov 59.26 0.00 0.00 −0.25
Dec 61.45 0.00 0.00 −0.25
Jan 62.93 0.00 0.00 0.00 −0.25

Final Liquidation Value of Portfolio −0.25

4.5 GREEKS

(i) A deeper understanding of the material of the last couple of chapters is obtained by considering
the various partial derivatives of the stock price. Let us return to the Taylor expansion of Section
3.4:

δ fSt t = ∂ fSt t

∂St
δSt + ∂ fSt t

∂t
δt + 1

2

{
∂2 fSt t

∂S2
t

δS2
t + ∂2 fSt t

∂St∂t
δStδt + ∂2 fSt t

∂t2
δt2

}
+ · · ·

Using the substitution δS2
t → σ 2S2

t δt which is explained in Section 3.3, and retaining only
terms of first order in δt gives

δ fSt t = ∂ fSt t

∂St
δSt +

{
∂ fSt t

∂t
+ 1

2
σ 2S2

t

∂2 fSt t

∂S2
t

}
δt

In Section 4.2(vi) we defined the delta of a derivative by 	St t = ∂ fSt t/∂St ; two other partial
derivatives are now defined as follows.

Theta: θSt t = ∂ fSt t

∂t This is the rate at which the value of an option changes over time.
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Gamma: �St t = ∂	St t

∂St
= ∂2 fSt t

∂S2
t

The second derivative is a measure of the rate of change of
the slope of the curve of fSt t against St , i.e. it measures the sharpness of the curvature of the
curve.

Lightening up on the notation a little, the Taylor expansion can now be written in Greek
letters:

δ ft = 	tδSt +
{
θt + 1

2
σ 2S2

t �t

}
δt (4.19)

(ii) This last equation is illustrated in Figure 4.2, and may be given the following physical interpre-
tation: in the time period δt , the stock price moves by δSt ; over the same interval, the derivative
price moves by δ ft = fSt +δSt t+δt − fSt t . This is represented by a move from the point A to
the point A′ in the graph, with the value of δ ft represented by the distance A′D. This is made
up of three distinct parts, which are easiest to understand if we think in terms of replication of
an option rather than hedging.

f

f

St+dSt t+dt

St t+dt

St t

f

tS tS dSt+

t dtq

tS dts G/ 2 2

t StD d

A

B

C

D

′A

1
2

Figure 4.2 Major Greeks

� A first-order term 	tδSt : As a first approximation, the option is replicated by a portfolio
consisting of 	St t units of stock plus some borrowing. The movement in value of this
portfolio is given by the distance CD in Figure 4.2.

� A second-order term in δSt (equals a first-order term in δt): The replication is not exact
since the graph of ft is curved. A move up in the stock price causes ft to move up slightly
more than the replicating portfolio. The extra distance moved is given by the distance BC in
Figure 4.2. Note that the option value is slightly greater than that of the replicating portfolio,
irrespective of whether δSt is up or down.

� A first-order term in δt : A derivative price is a direct function of time, so that in an interval
δt the derivative price will change even if St remains constant. This change is represented
by a shift in the derivative price curve (solid to dotted). In the graph, this is represented by
the distance A′ B.

(iii) In Section 4.3(iv) it was explained that if we buy an option for fair value and dynamically
hedge it until maturity, the process will produce a cash surplus exactly equal to the initial
premium of the option (adjusted for the time value of money). This followed from arbitrage
arguments, but it was not clear what process or mechanism was causing the positive cash
throw-off.
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4 Principles of Option Pricing

When an option is hedged with underlying stock, there is a slight mismatch between the
movements in the value of the option and the value of the hedging portfolio. As just shown, this
is due to the curvature of the curve of ft (the gamma term) and also the fact that the entire curve
shifts over time (the theta term). Each of the small gamma gains is positive in our example,
and each gain has value (θt + 1

2σ 2S2
t �t )δt . When added together over the life of the option,

these gains accumulate to a sum equal to the future value of the fair value of the option at the
beginning of the hedging period.

(iv) Black Scholes Equation revisited: If we compare the expansion of equation (4.19) with equa-
tion (4.16) we get{

θt + 1

2
σ 2S2

t �t

}
= 
t = −(Btr − 	t St q) = −	t (r − q)St + r ft (4.20)

which is just the Black Scholes equation written in Greek. This is not surprising since the
analysis is essentially the same as before: Ito’s lemma, which was used when the equation
was first derived, is based on the same Taylor expansion and the substitution δS2

t → σ 2S2
t δt ,

which are used in this section

(v) Usually, the financing term 
t is fairly small: 	t can be anything between 0 and 100% so that
	t St could be large; but (r − q) is likely to be well below 10% and r ft will certainly be small.
If θt + 1

2σ 2S2
t �t is small, then θt and �t will usually have opposite signs. In Figure 4.2, �t

was positive (curved upwards rather than downwards) and θt was also positive (dotted curve
above solid curve). This made the exposition simpler, but in practice if gamma were positive,
theta would be negative. This result was deduced in Section 2.6 entirely from the shape of the
payoff diagram and the curves of the option prices before maturity.

(vi) Minor Greeks: The differentials delta, gamma and theta introduced in this chapter are key con-
cepts for understanding option theory. There are two further differentials which are not central
to the theoretical structure, but are nonetheless useful. We list them here for completeness and
for future reference.

Rho: ρSt t = ∂ fSt t

∂r This is a measure of the sensitivity of an option value to changes in the interest
rate.

Vega: �St t = ∂ fSt t

∂σ
This is a spoof Greek letter, although occasionally this differential is referred

to as lambda (a real Greek letter). Elementary option theory assumes constant volatility; vega is
a measure of the effect of this simplifying assumption breaking down, and is used extensively
by practitioners.
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5

The Black Scholes Model

5.1 INTRODUCTION

In the last chapter, two approaches were suggested for finding the price of an option:

� Use risk neutrality to set growth rates (returns) equal to the interest rate and with these
substitutions, work out the expected value of the payoff. The present value of this amount
equals the fair value of the option today.

� Solve the Black Scholes equation subject to the appropriate boundary conditions.

Either of these methods can be used to derive the Black Scholes model for the prices of
European call and put options, which is the most famous and widely used option model. It
consists of a simple formula giving the value of the option as a function of a few parameters;
this is called a “closed form solution”. Normally, models do not come in such a convenient
form, but consist of a set of procedures which are applied in order to get a numerical value for
the price of an option; these are the “numerical methods” described in Part 2 of this book.

In the analysis of the previous chapters, a number of restrictive assumptions have been made.
They are referred to collectively as the Black Scholes assumptions or a description of the Black
Scholes world:

(A) Volatility is constant.
(B) Cash is borrowed or deposited at the same constant rate of interest.
(C) There is no buy/sell spread or sales commission.
(D) It is possible to short stock without charge.
(E) Markets are continuous, so there is always a quote available.
(F) Markets exist for any quantity of stock, including fractions of stock.
(G) Markets are completely liquid, so we get instant execution, in any size, at the quoted price.

5.2 DERIVATION OF MODEL FROM EXPECTED VALUES

(i) Risk neutrality tells us that the value at time t = 0 of a call option maturing at time T = 0 is
given by

C0 = e−rT E[CT ]risk neutral = e−rT E[max[(ST − X ), 0]]risk neutral

For notional simplicity, the risk-neutral suffix will be dropped but it must always be remembered
that we are dealing with pseudo-probabilities and pseudo-expectations.

The value of the option is zero if it expires out-of-the-money (ST < X ), so the expression
for the value of the call option at t = 0 may be written

C0 = e−rT E [ST − X : ST > X ]

(ii) In order to obtain the expected value we need to multiply the payoff by a probability dis-
tribution and integrate over ST . However, it is mathematically much simpler to transform
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variables: equation (3.7) states that ST = S0 emT +σ
√

T zT where m = µ − 1
2σ 2 and zT is a stan-

dard normal variate; in a risk-neutral world with dividends, m = (r − q) − 1
2σ 2. The mechan-

ical details of how to evaluate the conditional expectations are given in Appendix A.1(v) The
result is

C0 = e−rT
{

S0 e(r−q)T N[σ
√

T − Z X ] − X N[−Z X ]
}

where Z X = (ln(X/S0) − mT )/σ
√

T . This result is more usually written as

C0 = e−rT {F0T N[d1] − X N[d2]}
d2 = d1 − σ

√
T

d1 = ( ln(F0T /X
)+ 1

2σ 2T
)
/σ

√
T = ( ln S0/X + (r − q)T + 1

2σ 2T
)
/σ

√
T (5.1)

where F0T is the forward price.

(iii) Note that for constant X, E [X : ST > X ] = E [X | ST > X ] E [ST > X ] = X P[ST > X ]. It is
therefore sometimes stated that the factor N[d2] is the probability that ST > X , i.e. that the
option will be exercised. But remember that risk neutrality has led to the substitution µ → r .
Therefore P[ST > X ] is a pseudo-probability. The true probability that ST > X is N[d2], but
with r replaced by µ.

(iv) General Black Scholes Formula for Put or Call: Recall the put–call parity relationship of
Section 2.2(i):

F0T + P0 erT = X + C0 erT

Substitute from the Black Scholes expression for C0:

P0 erT = X{1 − N[d2]} − F0T {1 − N[d1]}
From equation (A1.4), N[d] + N[−d] = 1, so that

P0 = e−rT {X N[−d2] − F0T N[−d1]}
The Black Scholes formulas for European put and call options can be combined as

f0 = e−rT φ{F0T N[φd1] − X N[φd2]} (5.2)

where φ = +1 for a call option and φ = −1 for a put.

(v) In manipulating these formulas, we often need an option price at time t . Clearly, this is obtained
from equation (5.2) merely by making the substitutions f0 → ft ; S0 → St ; F0T → FtT ;
T → T − t.

5.3 SOLUTIONS OF THE BLACK SCHOLES EQUATION

It has been shown that the same arbitrage reasoning leads both to the risk-neutral stock price
distribution (from which we derived the Black Scholes model), and to the Black Scholes
equation. The two approaches should therefore lead to the same final conclusions: now comes
the acid test.
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(i) Stated formally, we seek a solution C(S0, T ) of the equation

∂C0

∂T
= (r − q)S0

∂C0

∂S0
+ 1

2
σ 2S2

0
∂2C0

∂S2
0

− rC0

subject to the initial and boundary conditions

� C(S0, 0) = max[0, S0 − X ]
� limS0→0 C(S0, T ) → 0
� limS0→∞ C(S0, T ) → S0 e−qT − X e−rT

(ii) Let us now make the following transformations, suggested by equation (A4.5) in the Appendix:

C0 = e−rT ′/ 1
2 σ 2

e−kx−k2T ′
v(x, T ′); x = ln S0; T ′ = 1

2σ 2T ; k = r − q − 1
2σ 2

σ 2

Substituting in the previous equation and doing the algebra reduces the problem to a solution
of the equation

∂v

∂T ′ = ∂2v

∂x2

subject to initial and boundary conditions

� v(x, 0) = max[0, e(k+1)x − X ekx ]
� limx→−∞ v(x, T ′) → 0
� limx→∞ v(x, T ′) → e(k+1)x+(k+1)2T ′ − X ekx+k2T ′

(iii) The solution of this problem is demonstrated in the Appendix: using Fourier transforms in
equation (A6.5) or using Green’s functions in equation (A7.8) we can write

v(x, T ′) =
∫ +∞

−∞
ekx max[0, ex − X ]

[
1

2
√

πT ′ e− (y−x)2

4T ′

]
dy

Without detailing every tedious step, the integral is performed as follows:

� Get rid of the awkward “max” function in the integral, setting the lower limit of integration
y = ln X .

� Change the variable of integration (y−x)2

4T ′ → z.
� Use the standard integral results of Appendix A.1(v).
� Substitute back for x, T ′ and k .

If the reader cares to check all this he will retrieve equation (5.1), the Black Scholes formula.

5.4 GREEKS FOR THE BLACK SCHOLES MODEL

(i) Some Useful Differentials: The Black Scholes model gives specific analytical formulas for
the prices of European put and call options. It is therefore possible to give formulas for the
Greeks simply by differentiation. The starting point is the Black Scholes model, but before
slogging away at the differentials, we note a couple of general results which much simplify
the computations.
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(A) From equation (A1.2) we have

∂ N[φd]

∂θ
= ∂ N[φd]

∂(φd)

∂(φd)

∂θ
= φn(d)

∂d

∂θ

where φ can only take values ±1 and is independent of θ , and n(d) = 1√
2π

e− 1
2 d2

.

(B) From the definitions of d1 and d2 given in equation (5.1), it follows that

d2 − d1 = −σ
√

T and d2 + d1 = 2

σ
√

T
ln

(
S0 e−qT

X e−rT

)

so that

d2
2 − d2

1 = (d2 − d1)(d2 + d1) = −2 ln

(
S0 e−qT

X e−rT

)

Substituting this into the explicit expression for n(d2) in (A) above gives

n(d2) = 1√
2π

e
− 1

2 d2
1 +ln

(
S0 e−qT

X e−rT

)
or S0 e−qT n(d1) = X e−rT n(d2)

(C) Differentiating the relationship d1 − d2 = σ
√

T gives


∂d1

∂S0
− ∂d2

∂S0
= 0

∂d1

∂r
− ∂d2

∂r
= 0

∂d1

∂T
− ∂d2

∂T
= σ

2
√

T
∂d1

∂σ
− ∂d2

∂σ
=

√
T

(D) Differentiating the explicit expression for d1 with respect to S0 gives

∂d1

∂S0
= 1

S0σ
√

T

The Greeks can now be obtained by differentiating equation (5.2):

f0 = φS0 e−qT N[φd1] − φX e−rT N[φd2]

d1 = 1

σ
√

T
ln

(
S0 e−qT

X e−rT

)
+ 1

2
σ
√

T ; d2 = 1

σ
√

T
ln

(
S0 e−qT

X e−rT

)
− 1

2
σ
√

T

(ii) Delta:

	 = ∂ f0

∂S0
= φ e−qT N[φd1] + φS0 e−qT n(d1)

∂d1

∂S0
− φX e−rT n(d2)

∂d2

∂S0

Using (B) and (C) above gives

	 = φ e−qT N[φd1] (5.3)

(iii) Gamma:

� = ∂	

∂S0
= φ2 e−qT n(d1)

∂d1

∂S0
and

∂d1

∂S0
= 1

Sσ
√

T
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so that

� = n(d1)

Sσ
√

T
e−qT

Note that this is independent of φ so that � is the same for a put or a call option.

(iv) Theta: The differential of the Black Scholes formula with respect to T would measure the rate
of increase of the value of an option as its time to maturity increases; but theta is the rate of
increase in value as time passes, i.e. as the maturity of the option decreases. Recalling the
conventions described in Section 1.1(v):

� = ∂ f0

∂t
= −∂ f0

∂T
= φq S0 e−qT N[φd1] − φr X e−rT N[φd2]

−S0 e−qT n(d1)
∂d1

∂T
+ X e−rT n(d2)

∂d2

∂T

Once again using (B) and (C) above gives

� = φq S0 e−qT N[φd1] − φr X e−rT N[φd2] − S0 e−qT n(d1)
σ

2
√

T

(v) Vega:

� = ∂ f0

∂σ
= S0 e−qT n(d1)

∂d1

∂σ
− X e−rT n(d2)

∂d2

∂σ

As before this can be simplified to

� = S0 e−qT n(d1)
√

T = X e−rT n(d2)
√

T (5.4)

No! The equals sign is not a typo. A direct comparison between this and the expression for
gamma gives

� = S2�σ T

(vi) Rho:

ρ = ∂ f0

∂r
= S0 e−qT n(d1)

∂d1

∂r
− X e−rT n(d2)

∂d2

∂r
+ φT X e−rT N[φd2]

ρ = φT X e−rT N[φd2]

(vii) The specific functional form of the Black Scholes formula leads to a very simple expression
for 	. The value of a call option can be written

C0 = { e−qT N[d1]}S0 − {X e−rT N[d2]}
= 	S0 − B0

where the first line is the Black Scholes formula and the second line represents a replicating
portfolio. The model can therefore be interpreted as the recipe for replicating a call: buy
e−qT N[d1] units of stock and borrow cash of X e−rT N[d2].

(viii) Approximate Option Values: The relative complexity of the Black Scholes model means that
it is quite hard to make a quick intuitive guess at the value of an option. However, practitioners
often use the formula 0.4 × σ

√
T % as the price of an at-the-money-forward option, i.e. one

where the strike price equals the forward price.

55



5 The Black Scholes Model

If X = F0T in equation (5.1), then we have d1 = 1
2σ

√
T and d2 = − 1

2σ
√

T . Ignoring the
dividends, we have for the price of a call option (or for that matter a put option):

C0 = S0{N[+σ
√

T ] − N[−σ
√

T ]}
The peak of a standard normal distribution is at a height of 1/

√
2π ≈ 0.4 [see equation (A1.2)],

so if 1
2σ

√
T is small we can write

C0 = S0 × 0.4 × σ
√

T

For short-term, low-volatility options this works well, although the robustness of the approxi-
mation is surprising, even over a wide range. The exact and approximate call option values for
σ = 20%, T = 3 months are 3.99% and 4.00%; for σ = 40%, T = 4 years they are 31.08%
and 32.00%.

5.5 ADAPTATION TO DIFFERENT MARKETS

(i) The objective of this book is to provide the reader with a grounding in option theory, which
can be applied to a variety of different markets. Most readers will be interested in one spe-
cific market, and it is always easier to read material which is narrowly specific to ones own
area of interest, but unfortunately this is not a practicable way to write a book. This sec-
tion tries to ease the reader’s burden of adapting the material to his own specific area of
interest.

In much of the forgoing, the market used to develop the theory was the equity market. This
was chosen since it is the most straightforward and widely understandable for newcomers to
finance theory: everyone understands what the price of one share of stock means and roughly
how dividends work; a futures price or convenience yield is more arcane. Where equity failed
to provide an adequate example, as in the discussions of arbitrage or futures, we have turned
to other markets such as foreign exchange or commodities. At the risk of some repetition, we
now summarize how the theory is adapted to other markets.

(ii) Equities: This is the easiest, since the theory has been developed largely with reference to
this market. It is a very straightforward cash market, i.e. the commodity (stock) is purchased
directly with physical delivery as soon as possible after purchase. In most established markets
there are traded options on the most important stocks, although forwards and futures on single
stocks have not yet become established.

This begs the following question: in the absence of a forward market, can we really price
an option using the arbitrage arguments of Section 1.2, which were developed for the foreign
exchange market with its large forward market which can be used to execute arbitrage trades?
The answer is an emphatic yes; foreign exchange was merely used as a simple illustration of
the no-arbitrage principle in its various forms. The notion of a forward can be used in pricing an
option, even though no formal forward market exists. The arbitrage that is actually performed
if an option is mispriced is not buying spot and selling forward, but extracting the option’s fair
value through delta hedging.

A formal forward market is not needed to calculate the fair value of an option from the
notional forward price; but the delta hedge must exist. In some markets, shorting stock is
illegal or restricted to certain categories of market participant, and often stock is just not
available for borrowing. This means that positive delta positions (short puts, long calls) cannot

56



5.5 ADAPTATION TO DIFFERENT MARKETS

be hedged and arbitrage arguments do not apply. The “fair value” is then no more than a
hypothetical construction.

The “dividend” q may be different for delta hedging with long or short stock positions. If
the stock is held long, q will indeed be the continuous dividend yield; but if the stock is held
short, q will be the total cash that needs to be paid out on the short position, i.e. continuous
dividend plus stock borrowing cost.

(iii) Prices, Values and Greeks of Forwards and Futures: Before going on to discuss other markets
it is worth briefly recapping on the meanings of the words “price” and “value”. In the cash
markets (equities, spot FX, spot commodities) the two mean exactly the same: if a stock price
is $50 its value is $50. In the case of options, usage is rather context dependent, but usually
price means what someone is prepared to pay, while value is calculated from the price of the
underlying commodity using a model.

Confusion arises with forwards and futures contracts, but this is largely a matter of semantics:

� The forward (FtT ) or futures (�tT ) price is the price at time t, at which one agrees to buy
a commodity at time T in the future. It was shown in Chapter 1 that if interest rates are
constant, then FtT = �tT = St e(r−q)(T −t).

� If the forward or futures contract is entered into at the prevailing market price (is at-the-
money), then its value is zero.

� Suppose the contractual purchase price in a forward contract is not equal to the forward
price but instead equal to X. The value of the contract is then given by equation (1.4):
ftT = St e−q(T −t) − X e−r (T −t) = e−r (T −t)(FtT − X ).

� It follows from the last point that the delta of a forward is 	fwd = ∂ ftT /∂St = e−q(T −t).
� A futures contract cannot build up value since it is marked to market daily and

�today − �yetsterday = δ� is paid over each day.
� An infinitesimal movement in the underlying price δSt will cause δ�tT to be paid over at the

end of a given day. From the relation�tT = St e(r−q)(T −t), delta is given by	fut = e(r−q)(T −t).

Futures and forward contracts both have delta close to 100% but have no gamma. They are
often used in place of the underlying stock or commodity to delta hedge options, since they
involve no initial cash outlay.

(iv) Foreign Exchange: These are the largest and most liquid markets considered in this book.
Most of the Black Scholes assumptions of Section 5.1 are fairly realistic, except for constant
volatility. In addition to the spot market, foreign exchange is very actively traded between
banks using over-the-counter (OTC) forward contracts; also, the important currencies have
publicly traded futures markets.

The theory carries over very simply from that developed for equity: the stock simply be-
comes one unit of the foreign currency. The dividend throw-off is replaced by the foreign
currency interest rate. This is a particularly easy substitution to make since interest rates are
incurred continuously. In fact the continuous dividend yield Black Scholes model was really
first developed for foreign exchange; in that context it is often known as the Garman Kohlhagen
model.

Delta hedging of foreign currency options is not usually carried out with physical foreign
currency. It is much more convenient and less cash consuming to use forward contracts or
futures. Note that the forwards or futures do not have to have the same maturity as the option
being hedged; the deltas of the option and its hedge just need to match.
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(v) Stock Indices and Commodities: In theory one can invest in a stock index by buying a prescribed
number of shares of each stock in the index. This is obviously too cumbersome to be practical
for hedging, but a direct investment in the underlying index is often not possible since no traded
instrument exists. In compensation, the futures markets on most major stock indices are very
liquid and cheap to deal in, and are the normal source for delta hedges.

Options on commodities may also be analyzed using the Black Scholes methodology devel-
oped for equity derivatives. In this case, storage and insurance costs are treated as a negative
dividend in the Black Scholes formula and in the formula relating the spot price to the futures
price. In theory then, we could delta hedge a commodities option by getting the delta from
the Black Scholes formula (setting dividends equal to negative storage costs); we would then
hedge by buying or selling the right number of futures such that 	fut balances the delta of
the option. Unfortunately, this does not work well in practice. In the first place, the storage
model for commodities futures prices does not describe market prices well; and second, setting
futures prices equal to forward prices only really works with constant, or at least uncorrelated,
interest rates [see Section 1.4.(iii)].

If we write an option and try to hedge the position in the futures market, we then run the
basis risk, or risk associated with futures prices deviating from the simple models previously
described. However, an alternative approach avoids this problem: instead of writing an option
on the spot price of a commodity, write it on the futures price. We turn our attention to these
contracts next.

5.6 OPTIONS ON FORWARDS AND FUTURES

(i) Following the last section, we now examine what happens if the underlying security is itself
a futures contract. For example, it was seen in the last section that a call option on a stock
index could be dynamically hedged by buying or selling the appropriate number of stock index
futures contracts; now we consider a call option on a stock index futures price rather than on
the index itself.

The analysis is very similar for forward contracts and futures contracts, so these are treated
together, with any divergence in behavior pointed out as we go along. Futures contracts are
of course far more important in practice, since these are traded on exchanges, while active
forward markets are normally interbank (especially in foreign exchange).

It is critical that the reader has a clear understanding of the concepts and notation of para-
graph (iii) of the last section.

now maturity of 
forward/
futures

0

time t 

Tt

maturity
of option

t(ii) The payoff of an option on a futures or
forward contract is more abstract than for
a simple stock. Compare the following three
European call options maturing in time τ :

� Options on the Underlying Stock Price: the contract is an option to buy one share of stock
at a price X.

Payoff = max[(Sτ − X ), 0]

� Options on the Forward Price: this is an option that at time τ we can enter a forward contract
maturing at time T, at a forward price of X. The value of this forward contract at time τ will
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be (FT τ − X ) e−r (τ−T ).

Payoff = max
[
(FτT − X ) e−r (T −τ ), 0

]
� Options on the Futures Price: as in the last case, this is an option to enter a futures contract at

time τ and price X; however, futures are marked to market daily so that a profit of �τT − X
would immediately be realized within one day of time τ .

Payoff = max[(�τT − X ), 0]

(iii) The forward price is given by FtT = St e(r−q)(T −t), and if interest rates are constant, we also
have FtT = �tT . We may therefore write

Volatility of FtT = volatility of �tT =
√

var 〈ln St 〉 = σ

In general, the volatility of the forward price equals the volatility of the spot price; the volatility
of the futures price equals the volatility of the underlying stock if the interest rate is constant.

(iv) Black Scholes Equation for Forwards/Futures: We shall now repeat the analysis of Sec-
tion 4.2(i)–(iii), but with a forward or futures price replacing the stock price of the underlying
equity stock. We use the notation VtT to denote the forward/futures price and vtT as the value of
the contract. Using the same construction as before, we suppose that we have a small portfolio
containing a forward/futures option plus 	 units of forward/futures contracts, such that the
portfolio is perfectly hedged against market movements. The value of the portfolio is

ft − 	tvtT = ft

The key difference between this and the previous analysis lies in this expression. For a forward
contract, vtT is the value at time t of a contract to buy a unit of commodity at time T for a
price equal to the time t forward rate; but such a contract has zero value at time t. Similarly, a
futures contract at time t has zero value.

Now consider an infinitesimal time interval δt during which the forward/futures contract
changes in value by δvtT . It follows from Section 5.5(iii) that

δvtT =
{

e−r (T −t)δFtT forward

�t+δt T − �tT = δ�tT futures

Either way, we can make the undemanding assumption that δvtT = A(VtT , t)δVtT . The increase
in value of the hedged portfolio over time t can now be written

δ ft − 	tδvtT = δ ft − 	t AtδVtT

The arbitrage condition corresponding to equations (4.5) is

δ ft − 	t AtδVtT

ft
= rδt (5.5)

It is assumed that forward and futures prices follow a similar Wiener process to a stock price:

δVtT

VtT
= µδt + σδWt
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Substituting this into equation (5.5) and using Ito’s lemma for δ ft gives(
∂ ft

∂t
+ µVtT

∂ ft

∂VtT
+ 1

2
σ 2V 2

tT

∂2 ft

∂V 2
tT

)
δt + σ VtT

∂ ft

∂VtT
δWt

− VtT At (µδt + σδWt ) 	t = r ftδt

The coefficient of δWt must equal zero, since the portfolio is perfectly hedged, so that

At	t = ∂ ft

∂VtT

Substituting this into the remaining terms gives

∂ ft

∂t
+ 1

2
σ 2V 2

tT

∂2 ft

∂V 2
tT

= r ft (5.6)

(v) Significance of the Simplified Black Scholes Equation: The equation which has just been
derived holds for forward prices and for futures prices. In the case of futures contracts, it does
not depend on the idealized assumptions which were used to equate the forward and futures
prices, i.e. constant interest rates.

The equation is simpler than the Black Scholes equation for options on an equity stock. The
reason can be traced to equation (5.5): the cost of entering a forward or futures contract is zero,
and these instruments have no dividend throw-off. Consequently, the financing costs for the
hedge are zero and the financing term reduces merely to the cost of carrying the option itself.
This becomes immediately plain by examining the Black Scholes equation written in the form
of equation (4.20).

The partial differential equation for forwards/futures has the same form as the general
Black Scholes equation for an equity stock, in which one has set q = r. This is in line with
the properties of forwards and futures with which we are already familiar. Consider first the
forward price: from equation (3.4) we have

Et [ST ]risk neutral = St e(r−q)(T −t) = FtT

where the symbol Et [·]risk neutral indicates that the expectation is taken at time t and risk neutral
means that we have set µ → r . Then

Et [FτT ]risk neutral = Et
[
Sτ e(r−q)(T −τ )

]
risk neutral = e(r−q)(T −τ ) Et [Sτ ]risk neutral

= e(r−q)(T −τ ) St e(r−q)(τ−t) = FtT

The risk-neutral expected growth rate of FtT is therefore zero, which is the same as for an
equity where q = r.

Clearly, this same result would hold for a futures price when �tT = FtT , i.e. when interest
rates are constant. However the result is more general, and holds for variable interest rates
also. The reason is that a futures contract costs nothing to enter so that arbitrage assures that
the expected profit from the contract must be zero:

Et [�τT ]risk neutral = �tT

(vi) Black ’76 Model: We have established that the Black Scholes equation for an option on a
forward/futures price can be obtained from the general equation for an option on the equity
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price by setting q → r ; therefore, the Black Scholes formula for an option on a forward
or futures price can be obtained from the general Black Scholes formula by just the same
procedure:

ft = e−r (τ−t) φ{VtT N[φd1] − X N[φd2]}

d1 = 1

σ
√

τ − t

{
ln

VtT

X
+ 1

2
σ 2(τ − t)

}
; d2 = d1 − σ

√
τ − t ; VtT = FtT or �tT

(5.7)
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6

American Options

Apart from a couple of sections in Chapter 2 and a few cursory references elsewhere, this book
has so far concentrated on the behavior of European options. These are relatively easy to value
and formulas normally exist for calculating prices and hedge parameters; but all of the general
option theory that was developed in Chapter 4 applies to any derivative which may be perfectly
hedged with underlying stock – American as well as European. In view of the widespread use
of American options, especially in the exchange traded markets, the pricing of these will now
be examined.

It should be stated at the outset that although the material in this chapter throws light on the
nature of American options, the most common ways of evaluating these options are dealt with
in later chapters. The reader in a hurry may prefer to limit his attention to Section 6.1.

6.1 BLACK SCHOLES EQUATION REVISITED

(i) Figure 6.1 shows the curves for the prices of an American and a European put option, each
with strike price X. The American option has an additional constraint PA > X − S0 which
does not apply to the European put: an in-the-money American put could be exercised at any
time, to yield the payoff. In consequence, while the values of the two options might be fairly
similar for large values of S0, they might diverge sharply for smaller values of S0, especially
below X.

X - S

Xe -rT
- Se -qT

EP

-rTXe *
0S

0S

AP

X

Figure 6.1 American vs. European put

(ii) In Section 4.2 the Black Scholes equation was derived from some very general hedging and
arbitrage assumptions, and by an application of Ito’s lemma. The rather heroic claim was
made that the price of any derivative is a solution of this equation, with appropriate boundary
conditions. We will test this by substituting the asymptotic values of the options into the Black
Scholes equation. But first we re-state equation (4.8) in terms of the time to maturity T by
making the substitution ∂/∂t → −∂/∂T [see Section 1.1(v)]. Options are valued in terms of
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today’s stock price S0:

−∂ P

∂T
+ (r − q)S0

∂ P

∂S0
+ 1

2 S2
0σ

2 ∂2 P

∂S2
0

= r P (6.1)

� As S0 → ∞, PE, PA → 0; clearly this satisfies the Black Scholes equation for both
American and European puts.

� For the European put, as S0 → 0, PE → X e−rT − S0 e−qT . Substituting this asymptotic
value of PE shows that this expression is indeed a solution to the Black Scholes equation.

� For the American put, as S0 → 0, PA → X − S0. Substituting into the equation gives

{r − q}S = r{X − S}

This is obviously not true, so that PA = X − S0 is not a solution of the Black Scholes
equation.

(iii) This last conclusion is rather unsettling and needs further investigation. The derivation of the
Black Scholes equation depends on two elements: first, Ito’s lemma which presupposes that
P(S0, T ) is a continuous and well-behaved function of S0 and T; second, that a perfect hedge
can be constructed over an infinitesimal interval of time.

The second of these assumptions is certainly true; but the first is only half true. Referring to
Figure 6.1, the curve of PA is a function of T and is a solution of the Black Scholes equation
for values of S∗

0 < S0; but if S0 < S∗
0 , then PA = X − S0 which is neither a function of T nor

a solution of this equation.
In summary, the value of an American put may be written

PA =
{

X − S0 S0 < S∗
0

f (S0, T ) S∗
0 < S0

(6.2)

where f (S0, T ) is a solution of the Black Scholes equation and S∗
0 is some (as yet unknown)

function of T. The region S0 < S∗
0 where PA = X − S0 is the region where the American option

should be exercised and S∗
0 is known as the exercise boundary.

The former conclusion, that the price of an option must satisfy the Black Scholes equation,
now needs to be modified slightly: it is indeed true unless the option is in a region where it
needs to be exercised.

(iv) Figure 6.2 shows how PA behaves above and below S∗
0 . Suppose the stock price is exactly S∗

0 : an
American put option (which is in-the-money) is hedged with one share of stock and the value
of this portfolio is PA + S∗

0 = X . Below the exercise boundary the portfolio has a constant
value X so that a fall in the stock price to S∗

0 − δS0 has no effect on the value of the portfolio.
On the other hand, if the stock price rises to S∗

0 + δS0, the value of the portfolio increases by

∂ fA

∂S0

]
S0=S∗

0

δS0 + δS0

This presents a forbidden arbitrage opportunity unless ∂ fA/∂S0 = −1. The common sense

64



6.2 BARONE-ADESI AND WHALEY APPROXIMATION

conclusion is that the two parts of PA join smoothly without a kink or discontinuity. This is
known as the “smoothness condition”.

S0
*

S0

PA

X - S
0

f (S0 , T)

Figure 6.2 American put option price

(v) This section might have increased the reader’s understanding of the nature of the Black Scholes
equation and its application to American options; but unfortunately there is no tidy, analytical
solution of the equation available for American options, analogous to the Black Scholes model
for European options.

Very general solutions are available using numerical techniques (the binomial method)
and will be explored in detail in later chapters. These methods are so widely understood and
accessible that they have really swept the board as the main tools for evaluating a wide range of
American-style options. The one initial drawback was that they took a lot of computing power,
but this resource has become cheaper, numerical methods have eclipsed a number of formerly
useful and ingenious closed form solutions of the Black Scholes equation which were devised
for special cases of American options. However, it is worth briefly looking at a couple of these
methods, if only to illustrate the theory developed in the last few pages.

6.2 BARONE-ADESI AND WHALEY APPROXIMATION

(i) This method can be applied to continuous dividend puts and calls. We will restrict our analysis
to put options where price divergence between European and American options is greater, but
the analysis for calls is exactly analogous (Barone-Adesi and Whaley, 1987).

The price of an American put option can be written PA = PE + ϕ, where PE is the price of
the European option and ϕ is a premium for the possibility of early exercise. This method
seeks a way of calculating ϕ; the Black Scholes model is used to calculate the values
of PE.

PA is a solution to the Black Scholes equation in the region S∗
0 < S0, i.e. above the exer-

cise boundary. Therefore in this region, ϕ is also a solution of the Black Scholes equation.
Rearranging from the normal order a little gives

1
2 S2

0σ
2 ∂2ϕ

∂S2
0

+ (r − q)S0
∂ϕ

∂S0
− rϕ − ∂ϕ

∂T
= 0 (6.3)
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(ii) Consider the evolution of ϕ over time which is illustrated in Figure 6.3. The key properties of
this graph are as follows:

S0 2
*

PA

S

PA

PE

PE

S0 1
*

t1

t2

j = PA - PE

t1 < t2

Figure 6.3 American put options

(A) The quantity ϕ is defined only in the region S∗
0 < S0.

(B) S∗
0 is a function of r, q, T and σ ; it decreases as T increases.

(C) As S0 → ∞ we expect ϕ → 0 since it is unlikely that the stock price will reach the S∗
0

where early exercise occurs.
(D) If S0 is small (but nevertheless above S∗

0 ), ϕ will approach its asymptotic value (X − S0) −
(X e−rT − S0 e−qT ) ≈ X (1 − e−rT ) for small dividend yield q.

(E) If T → 0 we must have ϕ → 0 since the early exercise possibility ceases to have any
meaning.

(iii) Define a new variable v = ϕ/(1 − e−rT ); differentiating with respect to T gives

−rϕ − ∂ϕ

∂T
= − rϕ

(1 − e−rT )
− (1 − e−rT )

∂v

∂T

Substituting this back into equation (6.3) gives

1
2 S2

0σ
2 ∂2ϕ

∂S2
0

+ (r − q)S0
∂ϕ

∂S0
− rϕ

(1 − e−rT )
− (1 − e−rT )

∂v

∂T
= 0 (6.4)

Consider now the last term in this equation:

� From (C) above, as S0 → ∞, ϕ → 0 and therefore v → 0; therefore the last term in equa-
tion (6.4) goes to zero.

� From (D), when S0 → 0, ϕ, approaches X (1 − e−rT ); therefore v approaches a constant and
the last term in equation (6.4) goes to zero.

� From (E), as T → 0, the expression in brackets in the last term of equation (6.4) goes to
zero.

In each of these limits of the variables S0 and T, the last term of equation (6.4) may be set to

66



6.2 BARONE-ADESI AND WHALEY APPROXIMATION

zero. The Barone-Adesi and Whaley (BAW) method assumes that this last term in the equation
may always be set equal to zero.

(iv) The BAW equation can now be written as

S2
0

d2ϕ

dS2
0

+ bS0
dϕ

dS0
+ cϕ = 0 where b = (r − q)

1
2σ 2

; c = −r
1
2σ 2(1 − e−rT )

This is a standard differential equation known as the Cauchy linear differential equation. Its
general solution is

ϕ = ASγ1 + BSγ2

where A and B depend on the boundary conditions and

γ1 = 1
2 {−(b − 1) +

√
(b − 1)2 − 4c}; γ2 = 1

2 {−(b − 1) −
√

(b − 1)2 − 4c}
(v) c is always negative, so that γ1 and γ2 must be real; furthermore, γ1 must be positive and γ2

must be negative. But if γ1 is positive, then the boundary condition limS0→∞ PA → 0 means
that we must have A = 0. We are then left with the following two-part solution:

PA =
{

X − S0 S0 < S∗
0

PE + ϕ = PE + BSγ2
0 S∗

0 < S0

These two complementary solutions for PA must be equal at the point S0 = S∗
0 . Furthermore,

the smoothness condition of Section 6.1(iv) means that the slopes of the two functions must
be the same at this point. This leads to the conditions

X − S∗
0 = P∗

E + BS∗γ2
0

	∗
E + Bγ2S∗γ2−1

0 = −1

}
or equivalently




X − S∗
0 = P∗

E + S∗
0

γ2
{1 + 	∗

E}

B = − 1 + 	∗
E

γ2S∗γ2−1
0

where P∗
E and 	∗

E are Black Scholes values calculated at S0 = S∗
0 . The value of S∗

0 must be
calculated numerically from the implicit equation which is the first on the right-hand side
above. The easiest way to do this is to use the Black Scholes formulas for P∗

E and 	∗
E and use

a “goal seek” function on a spread sheet. Finally, the formula for the price of an American put
above the exercise boundary is

PA = PE − 1 + 	∗
E

γ2
S∗

0

(
S0

S∗
0

)γ2

(vi) This model is quite ingenious, but the real test is how accurately it prices an option. Table 6.1
gives the prices of put options with X = 100, r = 10%, q = 1%, σ = 25% for a range of
values of S0 and T. BN is the value of an American put calculated with the binomial model
using a large number of steps and may be taken as the “right answer”. BS is the Black Scholes
price of a European put.

The results are fairly good overall, and are in line with the nature of the approximation
made: when T is either large or small, subsection (iii) shows that the last term in equation (6.4)
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6 American Options

Table 6.1 Comparison of models

American Put European Put

S0 BAW BN BS

T = 1 month 90 10.00 10.00 9.52
95 5.58 5.61 5.42

100 2.56 2.56 2.51
105 0.94 0.94 0.92
110 0.27 0.27 0.26

S∗
0 = 90.31 115 0.06 0.06 0.06

T = 10 years 70 30.00 30.00 5.33
80 20.50 20.56 4.23
90 14.34 14.35 3.40

100 10.42 10.38 2.75
110 7.81 7.71 2.25

S∗
0 = 75.40 120 6.00 5.87 1.86

T = 3 years 70 30.00 30.00 15.49
80 20.17 20.21 11.30
90 13.35 13.33 8.18

100 9.08 8.96 5.88
110 6.29 6.10 4.22
130 3.14 2.91 2.18
150 1.63 1.45 1.13

S∗
0 = 77.40 200 0.37 0.27 0.23

may be dropped. For intermediate values of T (we have taken 3 years), this assumption is less
justified and the results show that the errors are greater.

6.3 PERPETUAL PUTS

(i) The concept of a perpetual option seems bizarre. For European options it is meaningless: a call
option may go further and further in-the-money indefinitely, but it cannot be exercised until
maturity which is never reached!

For American options, which can be exercised at any time, the concept makes more
sense, and we examine the case of a perpetual put. If r > q , the expected value of the
stock price S (the forward rate) drifts upwards over time so that the option gets indefi-
nitely further out-of-the-money; but in the early stages of this infinitely long process, there
is some probability that it will pay to exercise the option. Later, the probability recedes to
zero.

(ii) An exact solution to this problem can be obtained using the techniques of Section 6.2. The
Black Scholes equation in the region above the exercise boundary can be written

1
2 S2σ 2 ∂2 P∞

∂S2
0

+ (r − q)S
∂ P∞
∂S0

− r P∞ − ∂ P∞
∂T

= 0

Since the put is perpetual, it cannot be a function of time, so the last term is zero and we are
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left with Cauchy’s equation:

S2 d2 P∞
dS2

0

+ bS
dP∞
dS0

+ cP∞ = 0 where b = (r − q)/ 1
2σ 2; c = −r/ 1

2σ 2

We have already come across the solution to this equation in the last section:

P∞ = ASγ1 + BSγ2

γ1 = 1
2 {−(b − 1) +

√
(b − 1)2 − 4c}; γ2 = 1

2 {−(b − 1) −
√

(b − 1)2 − 4c}

Again, γ1 must be positive and γ2 must be negative, so that the boundary condition
limS0→∞ PA → 0 gives A = 0. We are left with the two-part solution

P∞ =
{

X − S0 S0 < S∗
0

BSγ2
0 S∗

0 < S0

The two solutions and their first differentials must both be equal at S0 = S∗
0 which leads to the

conditions

X − S∗
0 = BS∗γ2

0

−1 = Bγ2S∗γ2−1
0

}
or equivalently




S∗
0 = γ2 X

γ2 − 1

B = − 1

γ2

(
γ2 − 1

γ2 X

)γ2−1

The final result may be summarized as

P∞ =




X − S0 S0 <
γ2 X

γ2 − 1

− 1

γ2

(
γ2 − 1

γ2 X

)γ2−1

Sγ2
0

γ2 X

γ2 − 1
< S0

γ2 = 1
2 {−(b − 1) −

√
(b − 1)2 − 4c} where b = (r − q)/ 1

2σ 2; c = −r/ 1
2σ 2

(iii) There are no approximations made in this particular model, so accuracy should not be an
issue. Taking a put with S0 = 100, X = 100, r = 10%, q = 4%, σ = 25%, we compare the
price of this perpetual put with a binomial put of maturity 200 years with several thousand
steps:

P∞ = 13.18

Pbin(200 years) = 13.09

6.4 AMERICAN OPTIONS ON FUTURES AND FORWARDS

(i) There is a divergence between the behavior of American options on forwards and futures; also
between these and American options on the underlying stock.

Recall from the analysis of Section 2.3 that an American call option on a non-dividend-
paying stock can be priced as a European option (since it makes no sense to exercise before
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maturity). The same is not true of an American put. This can be summed up as

CA(S0) = CE(S0); PA(S0) > PE(S0)

If the stock pays a dividend, an American call may of course be more valuable than a European
call. Forward and futures contracts do not pay dividends, so can one automatically assume that
the behavior follows that of non-dividend-paying stock?

payoff  CA(FtT )

CE(FtT )

FtT

Figure 6.4 Option on forward

(ii) Option on Forward Price: Consider both an
American and a European call option with
maturity τ on a forward contract with matu-
rity T (τ < T ). We compare the payoff of the
American option at time t (if it were exercised
at t) with the fair value of the European op-
tion at the same time. From equation (1.4) the
American payoff can be written

Payoff CA =
{

e−r (T −t){FtT − X}
0

Equation (5.6) (Black ’76 model) gives the formula

CE(FtT ) = e−r (τ−t){FtT N[d1] − X N[d2]}

As FtT → 0, both these last two expressions tend to zero. As FtT → ∞, N[d1] and N[d2]
both tend to one; but we always have τ < T so that the exponential discount factor is smaller
for the American payoff than for the value of the European option. It follows that we always
have

Payoff CA(FtT ) < CE (FtT )

as shown in Figure 6.4.
The arguments of Section 2.3 show that this leads to the conclusion that it would never

pay to exercise an American call option on a futures price; but if an American option were
never exercised, its value would be the same as that of the corresponding European option.
A precisely similar argument can be made to demonstrate that an American put option on a
forward price is worth the same as the European option. This is of course in sharp contrast to
the result for the options on the underlying stock – where an American put is worth more than
a European put. In conclusion

CA(FtT ) ≤ CE(FtT ); PA(FtT ) = PE(FtT )

(iii) Option on Futures Price: Let us repeat the analysis of the last section for American and
European call options on the futures price rather than the forward price:

Payoff CA =
{{�tT − X}

0

CE(�tT ) = e−r (T −t){�tT N[d1] − X N[d2]}
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payoff

CE(FtT )

CA(FtT )

FtT

Figure 6.5 Option on futures

The difference between this and the previous
case is that the futures contract settles daily so
that any option payoff is realized immediately;
hence the absence of the exponential factor in
the American option payoff. This means that
as �tT → ∞, the curve for the price of the
European option will at some point cut across the
payoff line for the American option, as shown in
Figure 6.5. The same reasoning also applies to
a put option on a futures price. Again using the
analysis of Section 2.3, we conclude that

CA(�tT ) > CE(�tT ); PA(�tT ) > PE(�tT ).
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7

The Binomial Model

This is one of the most important chapters of this book, so it is worth giving a road map of
where we are going.

Section 7.1 introduces the binomial model based on the random walk which is discussed in
the Appendix. This converges to the lognormal distribution for stock price movements, when
the number of steps is large; the price of an option computed by the binomial model will
therefore converge to the analytical formulas based on a lognormal assumption for the stock
price movements.

Section 7.2 shows how to go about setting up a binomial tree while Section 7.3 gives several
worked examples of the binomial model applied to specific option pricing problems.

The consequences of the binomial model for the derivatives industry have been enormous.
It is a powerful and flexible pricing tool for a variety of options which are too complicated for
analytical solution. But the impact on the industry goes further than this. Very little technical
skill is needed to set up a random walk model; yet these models can be shown to converge
reliably to the “right answer” if the number of steps is large enough. This approach has therefore
opened up the arcane world of option pricing to thousands of professionals, with an intuitive
yet accurate method of pricing options without recourse to advanced mathematics. Without
these developments, option pricing would have remained the domain of a few specialists.

7.1 RANDOM WALK AND THE BINOMIAL MODEL

(i) The following results are demonstrated in Appendix A.2 for a random walk with forward and
backward step lengths U and D and probabilities p and 1 − p. If xn is the distance traveled
after n steps of the random walk, then

� E [xN ] = N {pU − (1 − p)D}
� var [xN ] = N p(1 − p)(U + D)2

� The distribution of xN is a binomial distribution which approaches the normal distribution
as N → ∞.

Consider now the movement of a stock price. It was seen in Section 3.1 that the logarithm of
the stock price (ln St ) follows a normal distribution. If we observe the stock price at discrete
intervals of time, we postulate that xi = ln Si follows a random walk. The distribution of xi

then approximates to a normal distribution more and more closely if we make the number of
intervals larger and larger. If xi is the logarithm of the stock price at the beginning of step i then
we have xi+l = xi + U or xi+l = xi − D (i.e. Si+l = Si eU or Si+l = Si e−D) with probabilities
p and 1 − p. In the limit of small time intervals (N → ∞; U and D → 0), xN is normally
distributed and SN is lognormally distributed.

In the following analysis we switch our attention to the behavior of SN rather than xN . This
actually complicates the algebra a bit, but has the advantage of providing a more intuitive
picture; in any case, it conforms with the way most of the literature is written. A condition for



7 The Binomial Model

xN to approach a normal distribution is that U and D are constants; the corresponding condition
for SN to approach the lognormal distribution is that u = eU and d = e−D should be constant
multiplicative factors. The progress of xN is described as an arithmetic random walk, while
SN follows a geometric random walk.

tdd tdd

f0 0S

0f dS = dS0

0f uS = uS0

Figure 7.1 Two possible final states

(ii) Single Step Binomial Model: A description of the
binomial model starts with the simple one-step ex-
ample of Section 4.1.

Suppose the stock and derivative start with prices
S0 and f0. After a time interval δt , Sδt has one of
two possible values, Su or Sd , with corresponding
derivative prices fu and fd (Figure 7.1).

If a perfect hedge can be formed between one
unit of derivative and 	 units of stock, we saw in
Section 4.1(iv) that the no-arbitrage condition im-
poses the following condition:

fu − 	Su = fd − 	Sd = (1 + rδt) ( f + 	S)

We find it simpler to manipulate the interest term in continuous form, although many authors
develop the theory in the form just given. For small time steps and to first order in δt , the
results are the same. These equations can then be rewritten as

S0 = e−rδt (pSu + (1 − p)Sd ); f0 = e−rδt (p fu + (1 − p) fd )

	 = fu − fd

Su − Sd
; p = S0 erδT − Sd

Su − Sd

(7.1)

It is critically important to realize that we have not started by defining p as the probability of an
up-move. We have started from the no-arbitrage equations in which a parameter p appears. It
happens to have the general “shape” of a probability and is interpreted as the pseudo-probability
(i.e. probability in a risk-neutral world) that S0 moves to Su in the period δt .

If continuous dividends were taken into account, we would make the substitution Sδt →
Sδt e−qδt in the first equation and p would then be given by

p = F0δt − Sd

Su − Sd

where F0δt = S0 e(r−q)δt is the forward rate.

(iii) Conditions on Drift and Variance: Values can be obtained for u, d and p from a knowledge
of the mean and variance of Sδt . Writing Su = uS0 and Sd = d S0 and interpreting p as the
probability of an up-move in a risk-neutral world, the mean and variance of Sδt may be written

E[Sδt ] = {pSu + (1 − p)Sd} = S0{pu + (1 − p)d}
var[Sδt ] = {pS2

u + (1 − p)S2
u

}− E2[Sδt ] = S2
0 p(1 − p)(u − d)2 (7.2)

Recall the following results derived in Section 3.2(ii) and applied to a risk-neutral world:

E[Sδt ] = S0 e(r−q)δt = F0δt ; var[Sδt ] = E2[Sδt ]{eσ 2δt − 1} ≈ F2
0δt σ 2δt + O[δt2]
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Equating these last two sets of equations and dropping terms of higher order in δt gives

F0δt = S0{pu + (1 − p) d}; F2
0δtσ

2δt = S2
0 p(1 − p) (u − d)2 (7.3)

These are two equations in three unknowns (u, d and p), so there is leeway to choose one of
the parameters; is there any constraint in this seemingly arbitrary choice?

From the first relationship, it is clear that if Su (= uS0) and Sd (= d S0) do not straddle F0δt ,
then either p or (1 − p) must be negative. Since we wish to interpret p as a probability (albeit
in a risk-neutral world), we must impose the condition Sd < F0δt < Su .

The function p(1 − p) has a maximum at p = 1
2 . The second of equations (7.3) above

therefore yields the following inequality:

F0δtσ
√

δt

Su − Sd
≤ 1

2
(7.4)

This is really saying that if the spread Su − Sd is not chosen large enough, the random walk
will not be able to approximate a normal distribution with volatility σ .

(iv) Relationship with Wiener Process: Another way of looking at the analysis of the last para-
graph is to say that the Wiener process St+δt − St = δSt = St (r − q)δt + Stσ

√
δt z can be

represented by one step in a binomial process, where z is a standard normal variate so that
E[Sδt ] = S0(1 + (r − q) δt) and var[Sδt ] = S2

0σ
2δt .

We must now choose u, d and p to match these, i.e.

E[Sδt ] = S0(1 + (r − q)δt) = S0(pu + (1 − p)d)

var[Sδt ] = S2
0σ 2δt = S2

0 p (1 − p) (u − d)2 (7.5)

The reader may very well object at this point since this seems to be the wrong answer; equations
(7.3) and (7.5) are not quite the same. But recall that the entire Ito analysis is based on rejection
of terms of order higher than δt :

F0δt = S0 e(r−q)δt = S0 {1 + (r − q) δt} + O[δt2]; F0δt σ
√

δt = S0 σ
√

δt + O[
√

δt3]

To within this order, the results of this and the last subparagraph are therefore equivalent.

7.2 THE BINOMIAL NETWORK

(i) The stock price movement over a single step of length δt is of little use in itself. We need to
construct a network of successive steps covering the entire period from now to the maturity of
the option; the beginning of one such network is shown in Figure 7.2.

The procedure for using this model to price an option is as follows:

(A) Select parameters u, d and p which conform to equation (7.2). The most popular ways of
doing this are described in the following subparagraphs.

(B) Using these values of u and d, work out the possible values for the stock price at the final
nodes at t = T . We could work out the stock value for each node in the tree but if the tree
is European, we only need the stock values in the last column of nodes.

(C) Corresponding to each of the final nodes at time t = T , there will be a stock price Sm,T

where m indicates the specific node in the final column of nodes.
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7 The Binomial Model

(D) Assume the derivative depends only on the final stock price. Corresponding to the stock
price at each final node, there will be a derivative payoff fm,T (ST ).

(E) Just as each node is associated with a stock price, each node has a derivative price. The
nodal derivative prices are related to each other by the repeated use of equations (7.1).
Looking at Figure 7.2 we have

f4 = e−rδt {p f7 + (1 − p) f8}
f5 = e−rδt {p f8 + (1 − p) f9}

...

f2 = e−rδt {p f4 + (1 − p) f5}
...

This sequence of calculations allows the present value of the option, f0, to be calculated from
the payoff values of the option, fm,T (ST ); this is commonly referred to as “rolling back through
the tree”.

(ii) Jarrow and Rudd: There remains the question of our choice of u, d and p. The options are
examined for a simple arithmetic random walk in Appendix A.2(v); we now develop the
corresponding theory for a geometric random walk.

t = 0 t = T

0 1

3

6

2
4

5

7

8

9

m, tS

0S

0uS

0dS

2
0u S

0S
0S

2
0d S

3
0u S

2
0u dS

2
0u d S

3
0d S

0uS

0dS

m, T

final stock 
prices S

Figure 7.2 Binomial tree (Jarrow–Rudd)

The most popular choice is to put u = d−1, giving the same proportional move up and down.
Writing u = d−1 = e	, substituting in equations (7.5) and rejecting terms higher than δt gives
	 = σ

√
δt . The pseudo-probability of an up-move is then given by

p = e(r−q) δt − e−σ
√

δt

eσ
√

δt − e−σ
√

δt
≈ 1 + (r − q) δt − (

1 − σ
√

δt + 1
2 σ 2δt

)
(
1 + σ

√
δt + 1

2 σ 2δt
)− (

1 − σ
√

δt + 1
2 σ 2δt

)
≈ 1

2
+ 1

2

r − q − 1
2 σ 2

σ

√
δt (7.6)

Apart from its simplicity of form, this choice is popular because u = d−1. The effect of this
is that in Figure 7.2, S4 = ud S0 = S0. In other words, the center of the network remains at a
constant S0. Compare this formula for p with the corresponding result for an arithmetic random
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walk given by equation (A2.7). An extra term 1
2σ 2 has appeared in the drift, which typically

happens when we move from a normal distribution to a lognormal one.
Final stock prices merely take the values

S0 e−Nσ
√

δt , S0 e−(N−1)σ
√

δt , . . . , 0, . . . , S0 eNσ
√

δt

where N is the number of steps in the model.

(iii) Cox, Ross and Rubinstein: An alternative, popular arrangement of Su and Sd is to start the
other way round: specify the pseudo-probability as p = 1

2 and derive a compatible pair u and
d. Putting p = 1

2 in equations (7.3) gives

S0
(

1
2 u + 1

2 d
) = F0δt or S0(u + d) = 2 F0δt

1
2

(
1 − 1

2

)
S2

0 (u − d)2 = F2
0δt σ 2δt or S0(u − d) = 2 F0δt σ

√
δt

The equations on the right immediately yield

u = F0δt

S0
(1 + σ

√
δt); d = F0δt

S0
(1 − σ

√
δt) (7.7)

The binomial network for these values is shown in Figure 7.3. The probability of an up-move
or a down-move at each node is now 1

2 . The center line of the network is no longer horizontal,
but slopes up. At node 4 in the diagram the stock price is

Scenter,2δt = S4 = ud S0 = S0 e(r−q)2δt (1 − σ
√

δt)(1 + σ
√

δt)

= S0 e(r−q)2δt
(
1 − 1

2σ 22δt
) = S0 e(r−q)2δt

(
1 − 1

2σ 2 T
N/2

)
There are N steps altogether so that δt = T/N , and the center line Scenter has equation

Scenter,T = S0 e(r−q)T
(

1 − 1
2 σ 2 T

N/2

)N/2

→ exp
(
r − q − 1

2 σ 2
)
T as N → ∞

t = 0 t = T 

Scenter

0

1

2

3

4

5

Final Stock
Prices Sm, TSm, t

Figure 7.3 Binomial tree (Cox–Ross–Rubinstein)
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Final stock prices now take values

S0(1 + σ
√

δt)N e(r−q− 1
2 σ 2)T , S0(1 + σ

√
δt)N−1(1 − σ

√
δt) e(r−q− 1

2 σ 2)T , . . . ,

S0(1 − σ
√

δt)N e(r−q− 1
2 σ 2)T

(iv) For completeness, we list a third discretization occasionally used:

u = exp{(r − q)δt + σ
√

δt}; d = exp{(r − q)δt − σ
√

δt}
Substituting in equation (7.5) and retaining only terms O[δt] gives p = 1

2 (1 − 1
2σ

√
δt). The

center line of the grid now has the equation Scenter = S0 e(r−q)t , which is the equation for the
forward rate (known as the forward curve).

7.3 APPLICATIONS

(i) European Call: Jarrow–Rudd Method (u = d−1 = eσ
√

d t ): consider the tree shown in
Figure 7.4. From the specification of the option and equation (7.6), the following parame-
ters can be calculated:

With three steps δt = 0.5/3 : Ft t+δt = St e(r−q)δt = 1.01005St ; e−r δt = 0.983

u = eσ
√

δt = 1.0851; d = e−σ
√

δt = 0.9216; p = Ft t+δt − St e−σ
√

δt

St eσ
√

δT − St e−σ
√

δt
= 0.541

Using these u and d factors, we can start filling in the stock prices on the tree (shown just above
each node). The intermediate values of St are not really necessary for a European option, since
the option payoff only depends on the stock price at maturity; however, they are shown for
ease of understanding.

The payoff values of the option are max[(ST − 100), 0] and are shown just below the final
nodes. The option values at the next column of nodes to the left can be calculated as follows:

f (117.74, 4 months) = 0.983{0.541 × 27.76 + (1 − 0.541) × 8.51} = 18.609

f (100.00, 4 months) = 0.983{0.541 × 8.51 + (1 − 0.541) × 0.00} = 4.43

f (84.93, 4 months) = 0.983{0.541 × 0.00 + (1 − 0.541) × 0.00} = 0.00

100.00

108.51

117.74

127.76

92.16

100.00

84.93

108.51

92.16

78.27

27.76

8.51

0

0

18.61

4.53

0

11.95

2.41

7.44

6 monthst=o 2 months 4 months

S0 = 100

X = 100

r = 10%

q = 4%

s = 20%

t = 0.5 year

Figure 7.4 European call: Jarrow–Rudd discretization
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Continuing this process back to the first node (“rolling back through the tree”) finally gives a
6-month option value of 7.44. This may be compared to the Black Scholes value (equivalent
to an infinite number of steps) of 7.01. This price error is equivalent to using a volatility of
21.6% instead of 20% in the Black Scholes formula.

(ii) European Call: Cox–Ross–Rubinstein Method (p = 1
2 ): For purposes of comparison, we

reprice the same option as in the last section, using a different discretization procedure.
Once again we have δt = 0.5/3 and e−rδt= 0.983 but now we use p = 1

2 and equation (7.7),
so that

u = Ft t+δt

St
(1 + σ

√
δt) = 1.093; d = Ft t+δt

St
(1 − σ

√
δt) = 0.928

The tree is shown in Figure 7.5. This time, only the final stock prices are shown. The procedure
for rolling back through the tree is identical to that in the last section, with the simplify-
ing feature that p = (1 − p) = 1

2 . The calculation for the top right-hand step in the diagram
becomes

0.983 × 1
2 × (30.40 + 10.72) = 20.220

and so on through the tree. For all intents and purposes, the final answer is identical to that of
the last section (more precise numbers are 7.444 previously and 7.438 now).

130.40

30.40

110.72

10.72

94.00

0

79.81

0

20.22

5.27

0

12.53

2.59
7.44

6 monthst=o 2 months 4 months

0S = 100

X = 100

r = 10%

q = 4%

s = 20%

t = 0.5 year

Figure 7.5 European call: Cox–Ross–Rubinstein discretization

(iii) Bushy Trees and Discrete Dividends: Suppose that instead of continuous dividends, the stock
paid one fixed, discrete dividend Q. For purposes of illustration, we assume that it is paid the
instant before the second nodes. The tree can be adjusted at these nodes by the shift shown in
Figure 7.6. St , whatever its value, simply drops by the amount of the dividend. Unfortunately,
this dislocates the entire tree as shown. The tree is said to have become bushy.

Let us recall the original random walk on which the binomial model is based. This is
described in Appendix A.1, where we see that the tree is recombining by construction since
the up-steps U and down-steps D are additive. In such a tree, the insertion of a constant Q would
not cause a dislocation since everything to the right of this point would move down by the same
amount. This would have been the case if we had constructed the tree for xi = ln Si . However,
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0d(uS - Q)

0u(dS - Q)

0S

0uS

0uS - Q

0dS

Q

Q

0dS - Q

Figure 7.6 Discrete fixed dividend

we have constructed the tree for Si directly, so that the sizes of the up- and down-moves are
determined by the multiplicative factors u and d. A discrete dividend must also be multiplicative
if the tree is to remain recombining. Instead of a fixed discrete dividend we therefore use a
discrete dividend whose size is proportional to the value of St at the node in question. This is
illustrated in Figure 7.7, where the dividend is kuS0 at the higher node where the stock price is
uS0, and kd S0 at the lower node. The effect of this on the following three nodes is immediately
apparent: the tree recombines.

0S

0uS

0dS

0uS (1 - k)
0Q = kuS

0Q = kdS

0dS (1 - k)

0duS (1 - k)

0udS (1 - k)

Figure 7.7 Discrete proportional dividend

This proportional dividend assumption is implicit in the continuous dividend case, where
each infinitesimal dividend in a period δt is q Stδt , i.e. proportional to St .

We return to the call option and discretization procedure of subsection (ii), except that instead
of a continuous q = 4% (i.e. 2% over the 6-month period), there is a dividend of 2% × St at
the second pair of nodes. The parameters are similar to those of subsection (ii) with q = 0;
Ft t+δt = 102.020; p = 0.582; u = 1.0851; d = 0.9216; erδt = 0.983.

The terminal values are calculated, taking into account the dividend as shown. Rolling back
through the tree shown in Figure 7.8 is exactly the same as before and nothing different needs
to be done at the dividend point; this was entirely handled by the adjustment in the stock price.
The initial value of the option works out to be 7.297 compared with 7.444 for the continuous
dividend case. This difference gradually closes as the number of steps in the model increases.
At 25 steps it is only half as big.

The calculation was repeated using a fixed dividend of 2 paid at the same point, so that the
tree did not recombine. It is not worth giving the details of the calculations, but the option
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100.00

108.51

106.34
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88.51

115.38

98.00

83.24

125.20
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90.32

76.71

0

0

(in 2 months)

0S = 100

X = 100

r = 10%

Q = 4% 

s = 20%

t = 0.5 year

Figure 7.8 European call: discrete proportional dividend

value is found to be 7.356. The difference is negligible, justifying the use of the proportional
dividend model.

(iv) American Options: The European call option could of course have been priced using the Black
Scholes model. Binomial trees really come into their own when pricing American options.
Consider an American put with X = 110 and the remaining parameters the same as for the
European call of subsection (i); the same discretization procedure is used as in that section and
the results are laid out in Figure 7.9.

100.00

108.51

117.74

127.76

92.16

100.00

84.93

108.51

92.16

78.27

0

1.49

17.84

31.73

.67

8.85
10.00

23.81
25.07

4.87

16.63
17.84

10.64

0S = 100

X = 110

r = 10%

q = 4%

s = 20%

t = 0.5 year

Figure 7.9 American put: Jarrow–Rudd discretization

The procedure starts the same as in subsection (i):

(A) Set up the tree and calculate the values of each St and the terminal values of the option. This
time we need to put in the intermediate stock prices for reasons which become apparent
below.

(B) Calculate the terminal payoff values for the put option.
(C) Roll back through the tree calculating the intermediate option values. Starting at the top

right-hand corner, we have

0.67 = e−rδt (p × 0 + (1 − p) × 1.49)

83



7 The Binomial Model

(D) The next value in this column is

8.85 = e−rδt (p × 1.49 + (1 − p) × 17.84)

But an American put option at this point (S = 100, X = 110) could be exercised to give
a payoff of 10.00. The value of 8.85 must therefore be replaced by 10.00. Similarly, at the
bottom node in this column, the exercise value must be used.

(E) With these replacement values, the next column to the left is derived. Once again, the
bottom node is calculated as

16.63 = e−rδt (p × 10.00 + (1 − p) × 25.07)

This is less than the exercise value and must be replaced by 17.84, the exercise value of
the American option.

(F) Finally a price of 10.64 is obtained for the option. This compares with a value of 9.29 for
a similar European put.

The essence of the matter is summed up in Figure 7.10. In the next chapter we will show
that a binomial tree is mathematically equivalent to a numerical solution of the Black Scholes
equation. We saw in Section 6.1 that the price of an American option is only a solution of
the Black Scholes equation in certain regions. Below the exercise boundary, the value of the
American put is simply its intrinsic (exercise) value:

American put price =
{

f (St , t); solution to BS equation; St above exercise boundary

X − St ; not solution to BS equation; St below exercise boundary
te

rm
in

al
 v

al
ue

s

Option
exercised

here

t = 0

t = T

Exercise
boundary

Figure 7.10 American puts

(v) While the pricing given in this section is useful for illustration, such a small number of steps
would never be used for a real-life pricing. So what is the minimum number of steps needed
to price an option in the market?

While the answer to this depends on the specific option being priced, solutions are typically
distributed as shown in Figure 7.11. The principle features are as follows:

(A) The solid appearance of the left-hand graph comes about because the answers obtained
change more sharply in going from an odd number of steps to an even number than they
do between successive odd or even numbers of steps. When the option price is plotted
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against the number of binomial steps, the result therefore zig-zags between the envelopes
made up of odd and even numbers of steps.

(B) The reason for this is intuitively apparent from Figure A2.2 in the Appendix: as n increases
from 5 to 6, the way in which the binomial distribution is “fitted” to the normal distribution
changes radically. For n = 5, the binomial distribution has two equal maximum probability
values while for n = 6, there is only a single maximum probability; yet when n goes from
6 to 8, the only change is that a couple of extra bars are squeezed in, giving a slightly better
approximation to the normal curve. One would therefore expect smooth transitions for the
sequences n = . . . 5, 7, 9, . . . and n = . . . 6, 8, 10, . . . but jumps when going from odd
to even to odd.

(C) In most circumstances, the answer obtained for n steps is improved on by taking the
average of the answers of n steps and (n + 1) steps.

(D) Even when the average of successive steps is taken, the value oscillates, with decreasing
amplitude, around the analytical answer. However it is clear that beyond about 50 steps,
the answer is close enough for most commercial purposes.

Number
of steps

6.05

6.10

6.15

6.20

6.25

6.30

6.35

6 50 100 150 200 250 300
6.05

6.10

6.15

6.20

6.25

6.30

6.35

6 50 100 150 200 250 300
PRICES OF OPTION AVERAGE OF SUCCESSIVE PRICES

Figure 7.11 European call option priced with varying number of binomial steps: S = 100; X = 110;
r = 10%; q = 4%; σ = 20%; t = 1 year

(vi) Greeks: There are two possible approaches to calculating these, depending on the circum-
stances. Imagine a structured product salesman working on the price of a complex OTC option
for a client. He might typically be doing his pricing with a 100-step binomial model pro-
grammed into a spreadsheet. After tinkering around for a while he establishes a price, and as
a final step he works out the Greek parameters. The easiest way to do this is by numerical
differentiation.

His Greeks might then look as follows, putting δS = S/1000, δt = T/1000:

	 = ∂ f (S0, t)

∂S0
= f (1.001 × S0, T ) − f (0.999 × S0, T )

2 S0
× 1000

� = ∂2 f (S0, t)

∂S2
0

= f (1.001 × S0, T ) + f (0.999 × S0, T ) − 2 f (S0, T )

S2
0

× 10002

� = ∂ f (S0, t)

∂t
= f (S0, 0.999 × T ) − f (S0, T )

T
× 1000

This lazy but practical way of finding the Greeks works fine if only one option is being valued.
The tree has to be calculated three times, but so what?
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C
A

D

E

B

t= -2dt
t=0

Figure 7.12 Binomial Greeks

Take instead the case of binomial models which are used to evaluate books containing
hundreds of different options. Tripling the number of calculations in order to calculate the
Greeks as above may be unacceptably time consuming. An alternative approach is illustrated
in Figure 7.12. Suppose the solid part of the tree is the first couple of steps in the calculation
of an option price. While leaving the number of steps between now and maturity unchanged,
we can add another two steps backward in time; this is the dotted part of the tree. With this
small addition, the Greeks can be calculated from a single tree as follows:

	A = fD − fE

SD − SE

�A =
{

fD − fA

SD − SA
− fA − fE

SA − SE

}/
1

2
(SD − SE)

�A = fB − fC

4 dt

(vii) Finally, the reader should consider just how powerful a tool the binomial model really is: a few
examples should illustrate how we have extended the range of structures that can be priced.
These should now be quite within the reader’s ability to model:

(A) The strike price could be made a function of time, e.g. an American call with the strike
accreting at a constant rate.

(B) The option need not be either European or American but could be Bermudan: e.g. a 5-year
option, exercisable only in the first six months of each year.

(C) The payoff may be a non-linear function of the stock price: e.g. an option of the form

f =
{

0 if ST < X

(S − X )2 if ST > X
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8
Numerical Solutions of the Black

Scholes Equation

8.1 FINITE DIFFERENCE APPROXIMATIONS

(i) The object of this chapter is to explain various methods of solving the Black Scholes equation
by numerical methods, and to relate these to other approaches to option pricing. We start with
the Black Scholes equation in the following form:

∂ f0

∂T
= (r − q)S0

∂ f0

∂S0
+ 1

2 S2
0σ

2 ∂2 f0

∂S2
0

− r f0 (8.1)

where S0 and f0 are the prices of the stock and derivative at a time T before maturity. Using
equation (A3.4) of the Appendix, this can be written as a heat equation

∂u

∂t
= ∂2u

∂x2
(8.2)

where

f0(S0, T ) = e−rT (e−kx−k2t u(x, T )); x = ln S0; t = 1
2σ 2T ; k = r − q − 1

2σ 2

σ 2

We depart from our usual practice of saving the symbol t for time (in the sense of date),
although T remains time (to maturity). This saves us having to use obscure or non-standard
symbols and should be unambiguous.

(ii) The solution u(x, t) can be envisaged as a three-dimensional surface over the (x, t) plane.
The values of x range from −∞ to +∞, and the values of t from 0 to +∞. Imagine that we
cover the x–t plane with a discrete set of equally spaced grid points, which are δx apart in
the x-direction and δt apart in the t-direction, as shown in Figure 8.1. At the grid points, we
can write x = mδx and t = nδt , where m and n are integers. The coordinates of a grid point
can therefore be defined by counting off grid lines from the origin. The notation we adopt for
u(x, t) at a grid point is

u(x, t) = u(mδx, nδt) = un
m

(iii) A first-order approximation of the right-hand side of the heat equation can be written as

∂2u

∂x2
= ∂

∂x

{
∂u

∂x

}
→ 1

δx

{
1

δx

[(
un

m+1 − un
m

)− (un
m − un

m−1

)]}

= 1

(δx)2

{
un

m+1 + un
m−1 − 2un

m

} ≡ 1

(δx)2
δ̂

2
x un

m

where the operator δ̂
2
x is defined by the last identity, and will be used in the interests of brevity.

This approximation is symmetric in un
m and there is no reason to assume that it is subject to

any bias.



8 Numerical Solutions of the Black Scholes Equation

The left-hand side of the heat equation, on the other hand, cannot be unambiguously ap-
proximated. The following are some of the more common approximations, whose merits are
discussed later.

0
1u

0
0u

0
1u−

1
0u

0
2u

n+1um

n+1um−1

num+1
n+1um+1

num

num−1

Figure 8.1 Discretization grid

(iv) Forward Difference:

∂u

∂t
= 1

δt

(
un+1

m − un
m

)
This is the most obvious approximation, but clearly introduces a bias since it is not centered
on the time grid points, but half way between n and n + 1. Using this approximation, the heat
equation gives the following finite difference equation:

un+1
m − un

m = αδ̂
2
x un

m = α
(
un

m+1 + un
m−1 − 2un

m

)
where α = δt

(δx)2

(v) Backward Difference:

∂u

∂t
= 1

δt

(
un

m − un−1
m

)
This looks similar to the forward difference method, except that it is centered half way between
time grid points n − 1 and n, so that the bias is in the opposite direction. The resulting difference
equation is

un
m − un−1

m = αδ̂
2
x un

m = α
(
un

m+1 + un
m−1 − 2un

m

)
(vi) Richardson: The previous two methods cause forward and backward biases on the time axis,

so a simple remedy might be to take the average of the two:

1
2

(
un+1

m − un−1
m

) = αδ̂
2
x un

m = α
(
un

m+1 + un
m−1 − 2un

m

)
This seems an appealing solution; but the Richardson method is a standard textbook example
of how simple intuitive solutions do not always work. The method has a hidden defect which
makes it unusable, as described below.

(vii) Dufort and Frankel: This is an attempt to adapt the Richardson method so that it eliminates
bias (but also works!). We simply replace the final term un

m in the Richardson scheme by the
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average of un+1
m and un−1

m , giving

1
2

(
un+1

m − un−1
m

) = α
(
un

m+1 + un
m−1 − (un+1

m + un−1
m

))
= αδ̂

2
x un

m − α
(
un+1

m + un−1
m − 2un

m

)
This method does in fact work, although not especially well, and we will see below that if we
are careless in applying the scheme it can lead to quite spurious answers.

(viii) Crank Nicolson: This is the most important scheme, and the one that the reader is likely to
use if he is going to use the finite difference method seriously. The last two methods tried to
overcome the biases which are inherent in the discretization of the time variable. However,
there is another approach: when using the approximation for ∂2u/∂x2, use the average of the
values at n and n + 1. The result is simply

un+1
m − un

m = 1
2αδ̂

2
x

(
un+1

m + un
m

)
This could be regarded simply as the average of the forward difference result, and the backward
difference result one time step later.

(ix) Douglas:

un+1
m − un

m = 1
2αδ̂

2
x

((
1 − 1

6α

)
un+1

m +
(

1 + 1

6α

)
un

m

)

Where on earth did this come from? There is no simple intuitive explanation, but the really
interested reader will find the derivation in Section A.9 of the Appendix. This scheme takes
just about the same effort to implement as Crank Nicholson but can be much more accurate. It
can be shown that it is at its most accurate if we put α = 1/

√
20. Note that if we put α = 1/6,

the difference equation reduces to the forward difference scheme described above.

8.2 CONDITIONS FOR SATISFACTORY SOLUTIONS

The six schemes set out in the last section all seem quite reasonable; but are there any tests we
can carry out ahead of time, to check that we get sensible answers? It turns out that there are
three conditions that must be met which are explained below; but before turning to these, it is
worth pointing out to the reader that the numerical solution of partial differential equations is
something of an art form, containing many hidden pitfalls. We explain the principles behind
the three conditions, but we will not elaborate on the precise techniques used in testing for the
conditions. The reader can perfectly well use the discretizations described, taking on trust the
comments we make on their applicability. Alternatively, if he wants to be more creative and
devise new discretizations, he will have to delve into the subject more deeply than this book
allows.

(i) Consistency: In simple terms, we must make sure that as the grid becomes finer and finer,
the difference equation converges to the partial differential equation we started with (the heat
equation), and not some other equation. This may sound rather fanciful, so let us take a closer
look at the Dufort and Frankel scheme. On the face of it, we have merely eliminated the biases
of the forward and backward methods, without any very fundamental change. But in the limit
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of an infinitesimally fine grid, we may write

1
2

(
un+1

m − un−1
m

)→ δt
∂u

∂t
; αδ̂

2
x un

m → α(δx)2 ∂2u

∂x2

α
(
un+1

m + un−1
m − 2un

m

)→ α(δt)2 ∂2u

∂t2

so that the equation for the Dufort–Frankel scheme in Section 8.1(vii) becomes

∂u

∂t
+ β2 ∂2u

∂t2
= ∂2u

∂x2
; β = δt

δx

If we decrease the grid size at the same rate in the x- and t-directions (i.e. keep β constant),
the Dufort and Frankel scheme converges to a hyperbolic partial differential equation, which
is quite different from the heat equation. On the other hand, if we decrease the mesh in such
a way that α = δt/(δx)2 = constant, β would tend to zero and the finite difference equation
would be consistent with the heat equation. This constant α convergence is in fact the most
common way for progressively making the grid finer.

(ii) Convergence: This concept is easy to describe: does the value obtained by solving the difference
equation converge to the right number as δx, δt → 0? Or converge to the wrong number
(inconsistent), or oscillate or just wander about indefinitely? Unfortunately, precise tests for
convergence are difficult to devise. We therefore move on quickly, and later discover that there
is a round-about way of avoiding the whole issue.

(iii) Stability: Suppose we have set up some discretization scheme to solve the heat equation; we
have calculated all the numbers by hand to four decimal places and are satisfied with the
answers. But as a quick last check, we decide to run all the numbers again to one decimal
place. To our dismay, we get a substantially different answer. Does this mean that we made
an arithmetical slip somewhere? Unfortunately, the answer is “not necessarily”. It is in the
nature of some discretization schemes that as we move forward in time, a small initial error
gets magnified at each step and may eventually swamp the underlying answer. Such a scheme
is said to be unstable.

The underlying test we must make of any scheme with N time steps of length δx is to let
N → ∞ and δt → 0 in such a way that Nδt = t remains finite, and then see if a small error
introduced at t = 0 could become unbounded by the time it is transmitted to time step N. There
are two commonly used tests for stability which are quite simple to apply. However, we content
ourselves here with merely giving results for the schemes we introduced in the last section.

� The forward difference method is stable only if α ≤ 1
2 .

� The backward difference, Crank Nicholson and Douglas methods are always stable.
� The Richardson method is always unstable.
� Dufort and Frankel is always stable but as we saw above, it may not be consistent with the

heat equation.

(iv) Lax’s Equivalence Theorem: The reader might feel we have tip-toed away from the con-
vergence issue raised in subparagraph (ii) above. However, this theorem states that subject
to some technical conditions, stability is both a necessary and sufficient condition to assure
convergence, i.e. if we have got the stability conditions right, we can forget about convergence.
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Conversely, if a stability condition is even slightly broken, the solutions may fail to converge
in quite a dramatic way; an example of this is given later.

8.3 EXPLICIT FINITE DIFFERENCE METHOD

(i) The forward difference scheme of Section 8.1(iv) can be written

un+1
m = (1 − 2α)un

m + α
(
un

m+1 + un
m−1

)
; α = δt

(δx)2
≤ 1

2

n+1um+1

num+1

num

num−1

n+1um

n+1um−1

Figure 8.2 Forward difference

This is represented in Figure 8.2, which shows a small
part of the total grid. The key point to notice is that each
un+1

m can be calculated from the three values of u to the
immediate left, by simple arithmetic combination.

In general, when we use a finite difference method
to solve the heat equation, we start off knowing all the
values for t = 0 along the vertical axis; these are the
initial conditions. We also know the grid values for
certain values of x when t > 0; these are the boundary
conditions. For simple options they consist of known
values of un

m as x approaches ±∞.
If the forward finite difference scheme is used to calculate a particular value for u(x, t) = uN

M ,
we start with the initial values at t = 0 and work across the grid towards the point (N, M).
But because of the simple way in which the un+1

m only depend on the adjacent values to the
immediate left, only solutions within the shaded area of Figure 8.3 need to be calculated. This
leads to the slightly surprising conclusion that the boundary conditions are redundant.

This method is called the explicit difference method because we start with a knowledge of
the u0

m at the left-hand edge and can explicitly work out any un
m from these.
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Figure 8.3 Explicit method
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(ii) We are free to choose whatever value for α we please, subject to the scheme conforming
with the stability conditions. If we choose α = 1

2 , the finite difference equation becomes even
simpler:

un+1
m = 1

2

(
un

m+1 + un
m−1

)
subject to grid spacing δx = √

2δt

This scheme looks suspiciously like a binomial model turned back to front. But such a re-
versal is purely a question of conventions for assigning time. In the conventions of the heat
equation, t = 0 means “at the beginning” in a calendar sense; this is when the initial con-
ditions (temperature distribution in a long thin conductor) are imposed. In option theory, T
means time left to maturity; therefore T = 0 means “at maturity”. This is why the payoff
of an option (value at maturity) is often confusingly referred to as the initial conditions. In
Figure 8.3 we can flip the triangular network so that the initial conditions are on the right and
the “answer” is at the apex of the triangle on the left. But this now looks just like a binomial
tree.

(iii) Equivalence of Binomial Tree and Explicit Finite Difference Method: Let us return to equa-
tion (8.2) to see how this simple two-pronged discretization scheme looks when expressed in
terms of the underlying stock price, rather than its logarithm. The grid spacing relationship
becomes

δx = xn
m+1 − xn

m = ln
Sm+1

Sm
=

√
2δt = σ

√
δT

or more simply

Sm+1 = Sm eσ
√

δT

Similarly, we may write

un+1
m = er (T +δT ) ekx+ 1

2 k2σ 2(T +δT ) f n+1
m

un
m+1 = erT ek(x+δx)+ 1

2 k2σ 2T f n
m+1

un
m−1 = erT ek(x−δx)+ 1

2 k2σ 2T f n
m−1

Substituting these into the binomial scheme gives the relationship

f n+1
m = e−rδT

{
1
2 eλ+ 1

2 λ2
f n
m+1 + 1

2 eλ− 1
2 λ2

f n
m−1

}
λ = kσ

√
δT

Expanding the exponentials and discarding terms of O[δt3/2] leads to

f n+1
m = e−rδT

{
p f n

m+1 + (1 − p) f n
m−1

}
p = 1

2
+ 1

2

r − q − 1
2σ 2

σ

√
δT

This is precisely the Jarrow–Rudd version of the binomial model, summed up in equation (7.6).
The binomial model and the explicit finite difference solution of the Black Scholes equation
are simply different ways of expressing the same mathematical formalism. This conclusion
is reinforced by the essential stability condition α ≤ 1

2 mentioned in Section 8.2(iii); again
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discarding terms of O[δt3/2], this may be written in terms of T and ST as ST σ
√

δT /2δST ≤ 1
2 .

To the present order of accuracy in δT , this is the same condition that was expressed by
equation (7.4), and which came from a seemingly unrelated line of reasoning.

This should of course be of no great surprise:

� The binomial model is a graphical way of approximating the probability density function of
a stock price (or its logarithm).

� This probability density function is a solution of the Kolmogorov backward equation; there-
fore the binomial model is a graphical representation of the Kolmogorov equation.

� The explicit difference method was introduced to solve the Black Scholes equation.
� The Kolmogorov and Black Scholes equations are shown in Section A.4(i) of the Appendix

to be very closely related.

This duality between the explicit finite difference method and the binomial model is also true
of the trinomial model which is examined in a later chapter.

8.4 IMPLICIT FINITE DIFFERENCE METHODS

(i) Let us return to the backward difference scheme of Section 8.1(v) which may be written

un−1
m = (1 + 2α)un

m − α
(
un

m+1 + un
m−1

)

n+1um+1

n+1um

n+1um−1
num−1

num

num+1

Figure 8.4 Backward difference

and which is represented in Figure 8.4. In this case un−1
m

can be calculated from the adjacent u values immedi-
ately to the right. Unfortunately, this is an inconvenient
way to proceed. We know the values at the left-hand
edge of the grid (initial conditions) and the values at
the top and bottom edges (boundary conditions); the
solution of the problem is the series of values at the
right-hand edge. In order to find these right-hand edge
solutions, we need to solve a large array of linear si-
multaneous equations for all the un

m ; these are not
given explicitly in terms of known quantities – hence the name implicit methods.

(ii) As well as producing awkward simultaneous equations to solve, the implicit difference intro-
duces difficult boundary conditions. Compare Figures 8.3 and 8.5, showing boundary con-
ditions for the two methods. The simple nature of the explicit difference method meant that
we could ignore all values outside the shaded area, including boundary values. But with the
implicit method, boundary values are important.

For a European call option the boundary conditions are

lim
S0→∞

f0(S0, T ) → S0 e−qT − X e−rT

lim
S0→0

f0(S0, T ) = 0

93



8 Numerical Solutions of the Black Scholes Equation

In terms of x, t and k as defined in equation (8.2) this may be written

lim
x→∞ u(x, t) → erT ekx+k2t (ex − X e−rT ); lim

x→−∞ u(x, t) → 0

The boundary conditions are set at x = ±∞, so this would imply that the grid should stretch
between these limits. But this would give an infinite number of simultaneous equations to solve!
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boundary conditions

boundary conditions

x = +∞

x = +∞
M−

M+

Figure 8.5 Boundary conditions

Consider the graph of a European call option shown in Figure 8.6. The upper boundary
condition is that f0(S0, T ) → S0 e−qT − X e−rT . However this condition does not really need
to be applied at S0 = ∞; without appreciable loss of accuracy, it can be applied at S0 = U3,
or U2 or even U1; but if we apply the boundary condition at S0 = V , we start introducing an
appreciable error. The same principle applies when we seek a practical implementation of the
lower boundary condition.

-r tX e V 1U 2U 3U1L2L

Figure 8.6 Effective boundaries for call option

In terms of the boundary conditions in Figure 8.5, we choose a large positive and a large
negative x value, M+∞ and M−∞ beyond which we do not extend the grid. The values that we
insert at these edges are the effective boundary conditions. Of course, this begs an important
question: how do we know that we have chosen M+∞ and M−∞ far enough out that we have not
introduced an appreciable error, but not so far that we are doing a lot of redundant computing?
The answer is to set up the model on a computer and shift M+∞ and M−∞ about a bit; if the
answers do not change much, we are in a safe area.
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8.4 IMPLICIT FINITE DIFFERENCE METHODS

(iii) At this point, the reader might be wondering why anyone should burden himself with the
implicit difference method, when the explicit method is so much easier to solve. The explicit
method, cast in the form of the binomial model, is indeed much more popular than implicit
methods. After all, for every person who knows how to get finite difference solutions to a
partial differential equation, there are 100 guys who can stick numbers into a tree. On the
other hand, explicit methods do show an unfortunate tendency to be unstable, while stability
is assured over a much wider range by the implicit method.

Recall from Section 8.1 that the forward and backward finite difference schemes are not
well centered compared with the Crank Nicolson or Douglas schemes. But these latter two,
more stable and accurate schemes are just as easy to implement as the simple implicit method,
so they are normally the preferred route if an implicit scheme is used at all. A comparison of
the methods is given in Section 8.5.

(iv) The interesting discretization methods laid out in Section 8.1 can be combined into a single
formula:

un+1
m − un

m = 1
2αδ̂

2
x

(
θun+1

m + (1 − θ )un
m

)
Explicit: θ = 0
Implicit: θ = 1
Crank Nicolson: θ = 1

2

Douglas: θ = 1
2

(
1 − 1

6α
)

Trinomial: as Douglas with α = 1
6

Written out fully, this formula is

(1 + 2αθ )un+1
m − αθ

(
un+1

m+1 + un+1
m−1

) = (1 − 2α(1 − θ))un
m + α(1 − θ )

(
un

m+1 + un
m−1

)
(8.3)

In the following analysis, we use this in the form

−bun+1
m+1 + aun+1

m − bun+1
m−1 = eun

m+1 + cun
m + eun

m−1

This equation is easily expressed in matrix form. A little care is needed with the first and last
terms in the sequence (the term un

m−1 is undefined when m = 1). Taking these edge effects into
account, the above equation may be written as


a −b 0 0

−b a −b 0

0 −b a −b
. . .

a







un+1
M−1

un+1
M−2
...

un+1
−M+2

un+1
−M+1




−




bun+1
M

0
...

0

bun+1
−M




=




c e 0 0

e c e 0

0 e c e
. . .

c







un
M−1

un
M−2
...

un
−M+2

un
−M+1


+




eun
M

0
...
0

eun
−M




or

Apn+1 = Bpn + bqn+1 + eqn (8.4)

The square matrices have dimension (M − 2) × (M − 2) and the vectors have M − 2 elements.

(v) We start off knowing the values at the left-hand edge of the grid (initial values u0
m). From

the boundary conditions we also know the values at the top and bottom edges of the grid,
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Figure 8.7 Solution of implicit method

i.e. we know ui
M and ui

−M . We can therefore calculate the right-hand side of equation (8.4)
since we also know the elements of the matrix B; this will be designated by the vector s0. The
second column in the grid can therefore be obtained by using the equation Ap1 = s0. And so
the process can be repeated across the grid, merely by solving the equations Apn+1 = sn. This
process is illustrated in Figure 8.7.

The trouble is that inverting a 200×200 matrix is more than a question of “merely”. However,
the matrix A has a special tridiagonal form which makes the problem fairly easy to solve by
using one of several possible tricks; the simplest of these, known as the LU decomposition, is
described in Appendix A.10.

Finally, we note that if θ = 0, then the matrix A becomes the unit matrix and we have the
trivially simple explicit solution explained in Section 8.3.

(vi) Discretization of the Full Black Scholes Model: We finish this section with an observation
rather than a new method or technique. By a simple change of variables, we can transform
the Black Scholes equation into the simple heat equation (8.2); this simplifies the algebra
and makes the theory more easily intelligible. However, there is nothing to prevent us from
discretizing equation (8.1) directly.

As before we put

∂ f

∂S
→ 1

2δS

{
f n
m+1 − f n

m−1

}
;

∂2 f

∂S2
→ 1

(δS)2

{
f n
m+1 + f n

m−1 − 2 f n
m

}

∂ f

∂T
→




1

δt

{
f n+1
m − f n

m

}
: forward difference

1

δt

{
f n
m − f n−1

m

}
: backward difference

The Black Scholes equation becomes:

(A) Forward Difference

1

δt

{
f n+1
m − f n

m

} = 1
2 m(r − q)

{
f n
m+1 − f n

m−1

}+ 1
2σ 2m2

{
f n
m+1 + f n

m−1 − 2 f n
m

}− r f n
m

(B) Backward Difference

1

δt

{
f n
m − f n−1

m

} = 1
2 m(r − q)

{
f n
m+1 − f n

m−1

}+ 1
2σ 2m2

{
f n
m+1 + f n

m−1 − 2 f n
m

}− r f n
m
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(C) Crank Nicolson. Take the average of (A) and (B) at one time step later

a f n+1
m+1 + b f n+1

m + c f n+1
m−1 = α f n

m+1 + β f n
m + γ f n

m−1

where

a = −α = 1
4 m(r − q)δt + 1

4 m2σ 2δt

c = −γ = − 1
4 m(r − q)δt + 1

4 m2σ 2δt

(b − 1) = −(β − 1) = rδt + 1
2 m2σ 2δt

This equation has just the form of equation (8.4), although the coefficients of the f n
m are

not constant. However, this does not prevent us achieving a solution by LU decomposition
as described in Appendix A.10(v). It may at first seem slightly puzzling that there is no
term in δS in the equation, but the price discretization is reflected by the presence of the
index number m; remember that we are likely to impose an initial condition of the type
f 0
m = max[0, (mδS − X )].
Note that this discretization is not the same as that used in St space for binomial trees. In

the latter case, the grid spacing is proportional to the stock price while here we have used it
equal to δS.

The reader might be wondering why one would want to go to all the extra bother of discretiz-
ing a more complicated equation than necessary. The first reason is simply that it is easier to
have an intuitive feel for a calculation if you are dealing with observable quantities rather than
with complicated transforms; in any case, once this initial extra algebra is over, this version of
the Black Scholes equation is no more difficult to compute than the simple version. Second,
we do sometimes run across equations which do not convert easily into a simple heat equation.
For example, when we come to look at passport options in Chapter 18, we will see that there
is no alternative to discretizing a more complex differential equation.

8.5 A WORKED EXAMPLE

(i) In the last chapter we gave an explicit, worked example of how to calculate the price of a
European call option using a three-step binomial tree. Both the Jarrow–Rudd and the Cox–
Ross–Rubinstein methods were used and it turned out that they gave the same answer. We now
look at how to calculate the price of the same option using the Crank Nicolson method. The
same example is used as before: a call option, S0 = 100, X = 100, T = 6 months, r = 10%,
q = 4%, σ = 20%. The price which was obtained from the three-step binomial model was
7.44 and the Black Scholes price is 7.01.

(ii) The equation that we solve is the heat equation (8.2), so our calculations are performed in
terms of un

m rather than the option prices directly. The results are illustrated in Table 8.1;
before starting the u calculations we set up the exercise with the following steps:

(A) It was decided to choose N = 3 time steps, so that δT = 0.5/3 = 0.1667 years. This is
equivalent to δt = 1

2σ 2δT = 0.0033.

(B) The Crank Nicolson scheme is given by equation (9.3) with θ = 1
2 We have discretion

over the value of α and over the number of grid points in the x-direction. In this example
we use α = 1

2 and six steps in the x-direction; these values are chosen to make the set-up
as close as possible to the binomial example of the last chapter.
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Table 8.1 Crank Nicolson example

T = 

=

0.0000 0.1667 0.3333 0.5000 

t 0.0000 0.0033 0.0067 0.0100 
n
mu

x ln S= S   Option n =    0   1  2 3 
0f

  Payoff initial 
condition 

4.85 127.76 27.76   3 3545.94 3722.36 3901.58 4083.63 boundary  30.10

4.77 117.74 17.74 2 2088.56 2242.60 2413.97 2596.19 20.77

4.69 108.51 8.51 1 923.13 1087.05 1287.63 1476.38 12.81

4.61 100.00 0.00 0 0.00 344.88 550.20 722.67 6.81

4.52 92.16 0.00 -1 0.00 59.12 177.66 293.97 3.00

4.44 84.93 0.00 -2 0.00 9.85 42.75 92.85 1.30

4.36 78.27 0.00 -3 0.00 0.00 0.00 0.00 boundary  0.00

m

(C) The grid spacing in the x-direction comes from the definition of α, i.e. δx = √
δt/α =√

0.0033/0.5 = 0.0816. The first column of the table can now be filled in, starting
with 4.61 = ln 100 and progressively adding or subtracting 0.0816 to give the remaining
values.

The stock price values in the second column are obtained simply by taking exponentials
of the first column. Note that the S values in this grid correspond to those of the Jarrow–
Rudd scheme of Figure 7.4. If the reader is unsure of the reason for this, he will find the
answer in Section 8.3(iii).

(D) The option payoffs are max[(S − 100), 0] and are listed in the third column.

(iii) The initial values u0
m are simply obtained from the option payoffs of the previous column, using

the formula connecting f (S, T ) and u(x, T ) in equation (8.2). In this case we have k = 1 so
that as an example, 3545.94 = ekx × f = e4.85 × 27.76.

The boundary conditions are fixed at the extreme values of S (i.e. at 127.76 and 78.27) in
our discretization. As an example, the boundary condition at S = 127.76 and T = 0.1667 is

lim
S→∞

f → S e−qT − X e−rT = 127.76 e−0.04×0.1667 − 100 e−0.1×0.1667 = 28.56

u = f erT ekx+k2t = 28.56 e0.1×0.1667e4.85+0.0033 = 3722.36

In this particular example we have placed the boundary conditions at the extreme S values. This
is because the α value which we selected does not give a very wide spread between maximum
and minimum S. Normally we construct the grid so that the extreme S values go out at least
two or three standard deviations from their starting values. Had we chosen more grid points
in the x-direction or a smaller α (larger δx), we might have been in the position of having to
make a judgement on where precisely to apply the boundary conditions; but in this case we
just do the best we can and acknowledge that the small spread is likely to be a source of error.

The basic Crank Nicolson equation (8.3) is written

− 1
4 un+1

m+1 + 1 1
2 un+1

m − 1
4 un+1

m−1 = + 1
4 un

m+1 + 1
2 un

m + 1
4 un

m−1
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In this specific example, equation (8.4) may be written for the elements u1
m as follows:



1 1
2 − 1

4 0 0 0

− 1
4 1 1

2 − 1
4 0 0

0 − 1
4 1 1

2 − 1
4 0

0 0 − 1
4 1 1

2 − 1
4

0 0 0 − 1
4 1 1

2







u1
2

u1
1

u1
0

u1
−1

u1
−2




=




1
2

1
4 0 0 0

1
4

1
2

1
4 0 0

0 1
4

1
2

1
4 0

0 0 1
4

1
2

1
4

0 0 0 1
4

1
2







2088.56

923.13

0

0

0


+ 1

4




3545.94

0

0

0

0


+ 1

4




3722.36
0

0

0

0


 =




3092.14

983.71

230.78

0
0




The details of the solution of this last equation are set out in Appendix A.10. Using the
decomposition of Section A.10(i) and the simple iterative formulas of Section A.10(ii) allows
us to write


1 0 0 0 0

−0.167 1 0 0 0

0 −0.171 1 0 0

0 0 −0.172 1 0

0 0 0 −0.172 1







1.500 −0.25 0 0 0

0 1.458 −0.25 0 0

0 0 1.457 −0.25 0

0 0 0 1.457 −0.25

0 0 0 0 1.457




×




u1
2

u1
1

u1
0

u1
−1

u1
−2


 =




3092.14

983.71

230.78

0

0




or

L × Up1 = s0

Writing Up1 = t1, we can use the iterations of Section A.10(ii) to give


1 0 0 0 0

−0.167 1 0 0 0

0 −0.171 1 0 0

0 0 −0.172 1 0

0 0 0 −0.172 1







t1
2

t1
1

t1
0

t1
−1

t1
−2


 =




3092.14

983.71

230.78

0

0


 or




t1
2

t1
1

t1
0

t1
−1

t1
−2


 =




3092.14

1499.06

487.77

83.69

14.36
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And finally, using Section A.10(iv) leads to


1.500 −0.25 0 0 0

0 1.458 −0.25 0 0

0 0 1.457 −0.25 0

0 0 0 1.457 −0.25

0 0 0 0 1.457







u1
2

u1
1

u1
0

u1
−1

u1
−2


 =




3092.14

1499.06

487.77

83.69

14.36


 or




u1
2

u1
1

u1
0

u1
−1

u1
−2


 =




2242.60

1087.05

344.88

59.12

9.85




This whole process is now repeated for the next two columns in Table 8.1. The option prices
are obtained from the values u3

m in the final column; for example

f (S0 = 100, T = 6 months) = e−rT (e−kx−k2t u(x, T ))

= e−0.1×0.5(e−4.61−0.01 × 722.67) = 6.81

This is 3% away from the Black Scholes result, which for an absurdly small number of steps
is quite surprising. The performance of these finite difference methods as a function of step
numbers is examined in the next section.

(iv) American Options: The treatment of American options follows the method that was described
for the binomial model. We start by recognizing that the value of an American option is only
a solution of the Black Scholes equation when the stock price is above the exercise boundary;
below this level, the value is simply the exercise value (see Section 6.1). At each grid point,
we therefore compare the value un

m with a value νn
m = erT ekx+k2t E , where E is the exercise

value of the option; we adopt the greater of νn
m and un

m .

(v) Discrete Dividends: Suppose that instead of a continuous dividend, a single dividend is paid
between time grid points n and n + 1. The standard way of handling this is to make the stock
prices Sn+1

m drop by an amount Q. We assume that the dividend is paid an instant before tn+1, so
that each of the points xn+1

m drop by an amount δx = ln Sn
m − ln(Sn

m − Q) = ln[Sn
m/(Sn

m − Q)].
This is a function of Sn+1

m so that the grid would no longer maintain uniform spacing in the
x-direction; practical calculations would become very cumbersome.

The same problem was encountered with the binomial model and was solved by assuming
that the dividend is proportional to the stock price, i.e. Qn+1

m = kSn+1
m ; the grid points then

drop by an amount δx = ln[1/(1 − k)] = constant. The whole grid is simply dislocated at the
dividend point while retaining the same spacing as before.

8.6 COMPARISON OF METHODS

(i) The most straightforward test of the various methods is to see how they compare with
an analytical solution. Different methods are therefore applied to a European call option
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with the following parameters: S0 = 100; X = 110; T = 1 year; r = 10%; q = 4%; σ =
20%.

The graphs that follow show the calculated price of this option plotted against the number
of time steps. In each case we have used twice as many grid points in the x-direction as in
the t-direction, and unless otherwise stated, α = 1

2 . In practice, for large values of N this
leads to an unnecessarily large spread of x values, which can be truncated without loss of
accuracy.

The Black Scholes value of this option is superimposed on the following graphs. The
inside (darker) band denotes ±0.1% of the Black Scholes price (6.185), while the outer
band is ±0.5%. When translated into volatility spreads, these levels of accuracy corre-
spond to volatilities of 20.000 ± 0.016% and 20.000 ± 0.081%. Any practitioner will re-
alize that even the broader band is well within the tolerances encountered in the options
markets.

(ii) Binomial Model: This is the simplest model to apply. By definition it has α = 1
2 (otherwise it

becomes a trinomial model); but we have seen that an explicit finite difference method is only
stable if α ≤ 1

2 , i.e. this model hovers uncomfortably at the edge of instability. This is reflected
in the zig-zag pattern of Figure 8.8.

Number of Steps

Calculated Price

6.05

6.1

6.15

6.2

6.25

6.3

0 20 40 60 80 100 120 140 160 180 200

Figure 8.8 Binomial method (explicit finite difference method: α = 0.50)

(iii) Instability: Figures 8.9 and 8.10 illustrate just how sharp the edge between stability and
instability really is. Results are shown for α = 0.51 and α = 0.49 which are immediately
adjacent to, but on either side of the stability boundary. Remember that with these values for
α, the model is no longer binomial. These very slight differences in α make the difference
between a wildly unstable model and one which converges fairly quickly.
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Figure 8.9 Explicit finite difference method: α = 0.51
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Figure 8.10 Explicit finite difference method: α = 0.49

(iv) Trinomial: The conclusion of the last subsection is that we are more likely to get reliable
results by using a trinomial model than with a binomial scheme. In the next subsection it will
be seen that there are good reasons for using a trinomial rather than a binomial tree, other
than considerations of stability. A popular scheme uses α = 1/6 and the results are shown in
Figure 8.11.
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Figure 8.11 Trinomial tree
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Figure 8.12 Crank Nicolson
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(v) Crank Nicolson: This implicit scheme is illustrated in Figure 8.12. It is clearly the most
consistent method illustrated so far. Two other schemes which might be of interest to the
reader are not illustrated: the simple implicit method, which in theory should be somewhat
less accurate and Douglas, which should be more accurate. But for the option which we have
chosen as an example, there is very little difference from the Crank Nicolson result.

(vi) Average of Successive Binomial: It was seen in Chapter 7 that we can make a more consistent
result from the binomial method by averaging the results obtained using N and N + 1 steps.
The results are shown in Figure 8.13 and turn out to be surprisingly close in form to the Crank
Nicolson results. In a way, this should not be surprising if we look back to Section 8.1(viii) and
remember that Crank Nicolson implies an averaging between values at steps N and N + 1.
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Figure 8.13 Average of successive binomial steps
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9

Variable Volatility

9.1 INTRODUCTION

(i) Price Volatility: Apart from a few stray references, option theory has been developed to this
point in the book with the assumption that stock price volatility remains constant. But it is
very unlikely that a reader would have got this far without having heard that volatility is not
constant. Before plunging into the subject we need to spend a couple of pages both defining
the jargon and explaining the market observations which cause us to depart from the previous,
well-ordered world of constant volatility; also, we define what type of variability we will
include in the improved analysis.

Anyone wanting to know the volatility of a stock normally starts with an information service
such as Bloomberg, which gives graphs of historical volatility based on data samples of our
choice, e.g. measured daily over 3 months or weekly over 1 year. Clearly, the pure sampling
process introduces some random fluctuations in the answer we get; but the variability we get
in real life far outweighs any sampling error. There is no doubt that the volatility of individual
stocks (and indeed the market as a whole) changes over time, often very abruptly: it is not
uncommon to see the volatility of a stock suddenly jump from 30% to 40%.

This variability of volatility might arise in a number of ways:

1. There might be an additional random process involving jumps, superimposed on the log-
normal distribution of stock price movements. This is clearly sometimes the case: if a stock
price suddenly shoots up on the announcement of a merger, there has been a jump. But un-
fortunately option theory can do little to help us devise a strategy for managing or hedging
such events, and the topic will not be pursued further here. Just remember that however
much option theory you learn, you still take big risks in the real world.

2. The underlying price process might not be lognormal at all; our attempts to squeeze a non-
lognormal process into a lognormal model would make the implied volatility appear to be
variable. We will investigate this further below and devise a method of assessing the real
underlying distribution, directly from option prices.

3. The volatility itself might follow some unknown stochastic process, completely independent
of the stock price process. A mountain of technical literature seeks (with partial success)
to describe and explain the underlying mechanisms. We choose not to tackle the subject,
which is outside the main objectives of the book.

4. Volatility might be a function of time or of the underlying stock price (or both). We will
spend much of the rest of this chapter extending option theory to take account of this
dependence.

The reader might be puzzled over our decision to investigate the phenomenon described in
point 4 above but not follow the theme of point 3 any further. The reason is that the study of true
stochastic volatility, while of great interest in determining future price expectations, does not
help us much in working out hedges. On the other hand, we must understand the dependence
of volatility on the stock price if we are to price different options on the same underlying stock
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consistently with each other, i.e. if we are to run books of different options on the same stock.
However, we must always remember that the price relationships we derive between different
options on the same stock will not be stable through time, as they do not take account of the
stochastic movements in volatility which are independent of the price of the underlying asset.

0 Tt

s2
s1

(ii) Term Volatility: Consider first a volatility which is de-
pendent only on time. The variance of the logarithm
of the stock price after time T can be written σ 2

T T . But
suppose that over the period T, the volatility had been
σ1 over the first period τ , and σ2 over the remaining period T − τ :
The volatilities would then have been related as follows:

σ 2
T T = σ 2

1 τ + σ 2
2 (T − τ )

This is derived from the general property that the variance of the sum of two independently
distributed variables is equal to the sum of their variances. The relationship may be generalized
to the important result

σ 2
AV(T ) = 1

T

∫ T

0
σ 2

t dt

The jargon for describing these quantities is unfortunately far from standard. For σAV(T ) we
shall use the expressions average volatility or integrated volatility or even an expression such
as the 2-year volatility. σt is called the instantaneous volatility or spot volatility or local
volatility.

(iii) Implied Volatility: If you ring a broker and ask him the price of an option, he is as likely to
give a volatility as he is to give a price in dollars and cents; but securities are bought for money,
so what does this quote mean? We have seen that from a knowledge of just a few parameters
(including volatility), we can use the Black Scholes equation to calculate the fair value of an
option. This process can be inverted so that from a knowledge of the price we can estimate
the volatility. A volatility obtained in this way is called an implied volatility and this is the
volatility quoted by the broker. In the idealized constant volatility world, this volatility would
be the observed volatility of the underlying stock.

The reader with any experience of real markets might be very skeptical at this point. Implied
volatility is not an objectively measurable quantity; it is a number backed out of a formula.
What if the Black Scholes formula is wrong, or even slightly inaccurate? Well, what if it is?
As long as everybody agrees on the same formula, we still have a one-to-one correspondence
between the option price and the implied volatility. The formula used is always Black Scholes
or Black ’76 or a tree using Black Scholes assumptions, depending on the type of option and
underlying instrument. But what if the interest rates used by two people differ slightly or one
uses discrete dividends while the other uses continuous? The answer is of course that before a
trade is agreed, both parties must revert to prices in dollars and cents. So why bother to jump
through all these hoops rather than just quoting prices directly?

Traded options are quoted with a number of fixed strikes and maturity dates (1 month apart
for maturities of less than 3 months and 3 months apart for 3 to 9 months). Clearly it is quite
difficult to make immediate, intuitive comparisons between option prices; but comparisons
between their implied volatilities will make immediate sense to a professional. There may be
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individual options that are substantially undervalued compared to others in the same series.
This would be immediately apparent by comparing implied volatilities. The process is not
dissimilar to comparing different bonds: if we want to compare a 3-year bond with a 12%
coupon to a 7-year bond with a 3% coupon, yield comparisons will tell us a lot more than price
comparisons.

(iv) In summary, we consider three quantities called volatility and the reader must clearly understand
the differences between them:

1. Historic volatility or realized volatility which is the volatility of the underlying stock price
observed in the market. The value is obtained by a sampling process, e.g. from day end
prices over the previous 1-month period. Although it sounds odd, one occasionally hears
expressions like future historic volatility, which means the actual volatility that will be
achieved by the stock price in the future.

2. Instantaneous and integrated volatilities, which are idealized mathematical quantities.
The first is the factor that appears in the representation of a stochastic process
dxt = µ(xt , t) dt + σ (xt , t)dWt . We normally write it more simply as σt . The integrated
(average) volatility is simply the volatility obtained by averaging the instantaneous volatil-
ities over a period. In any theory of volatility we construct, our average volatility is equated
to the historic volatility over a like period.

3. The implied volatility, which is a number backed out of a model (which may or may not
be accurate) by plugging in an option price. The previous two types of volatility make
no reference to options while this type is obtained from a specific option and a specific
model.
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Figure 9.1 Volatility skew

(v) Implied Volatility Skew: The 1987 stock mar-
ket crash was of unprecedented abruptness. Its
consequences for the real economy were mild
when compared with the weaker crash of 1929,
but the speed of the fall was much larger. By
one well publicized measure at least, this was a
14 standard deviation event. The first reaction to
such a figure is to question the probability dis-
tribution used for market prices; there is indeed
good reason to disbelieve the usual lognormal
assumption, and we now examine some of the
evidence.

The implied volatility depends on the accuracy of the Black Scholes model and hence on
the assumptions underlying the model (in particular the lognormal distribution of the stock
prices). In Figure 9.1 we plot the implied volatility of a series of traded call options of the same
maturity but different strike prices; the stock price was 100. Clearly there is a systematic bias,
known as the skew or smile, which indicates that some of the Black Scholes assumptions have
broken down. Rather mysteriously, these smiles only started appearing systematically after the
1987 crash.

Given the empirical results shown in Figure 9.1 for European call options, the pattern for
European put options must follow from arbitrage arguments. The put–call parity relationship
expresses an equivalence between a put and a call with the same strike, given by equation
(2.1); it was derived quite independently of any option model or assumption about stock
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price distributions. Therefore, any mistake or inaccuracy due to model misspecification which
appears in the implied volatility of a European call option will also show up in the implied
volatility of the corresponding put option. If not, we could arbitrage a put plus underlying
stock against the call. In conclusion, when we present implied volatilities plotted against strike
prices, it is not necessary to specify whether they are derived from put or call options.

ST

Probability
Density

Normal

Skewed

Figure 9.2 Volatility skew

If we assume that this skew is due to a depar-
ture from lognormality of the underlying stock,
what does it imply for the shape of the actual
probability function? A normal distribution for
the log of the stock price would follow if the
curve in Figure 9.1 were flat; but the observed
curve shows that put options with a strike of
90 are “overpriced” while call options with a
strike of 110 are “underpriced”. The implied
probability distribution to produce such pric-
ing would have a greater value at lower values

of the final stock price. This is illustrated in Figure 9.2.
No convincing single explanation for the skew phenomenon, or why it appeared only after

the 1987 crash, has been advanced. However, each of the following is a credible contributory
factor:
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Figure 9.3 Volatility smile

• Historic volatilities of stocks increase naturally when stock prices fall, because in
these circumstances uncertainty and leverage increase for the company. This causes the
out-of-the-money puts to be “overpriced”
compared to out-of-the-money calls.

• The trading community has permanently
learned the lesson that insurance against
highly improbable but potentially fatal out-
comes makes sense: it is worth buying out-
of-the-money puts.

• Empirical observation shows that even if
markets follow Brownian motion most of the
time, they are nonetheless subject to occa-
sional jumps. If account is taken of this effect,
the observed probability distribution appears
to become skewed.

S
T

Probability
Density

Normal

Skewed

Figure 9.4 Volatility smile

(vi) Smiles: The skew shown in Figure 9.1 is gener-
ally observed for equities and minor currencies.
Stock indices also follow the pattern but are dis-
tinctly flattened in the region to the right of the
at-the-money point. Foreign currency options (on
major currencies) have a symmetry imposed by
the reciprocal nature of the contracts (a call in one
currency is a put in the other). This is reflected
in Figure 9.3, which shows the analog of the eq-
uity skew, referred to for obvious reasons as the
implied volatility smile.
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The implied probability distribution function takes the form shown in Figure 9.4. Far out-
of-the-money puts and calls are now both “overvalued”, which implies that the area under the
tails of the distribution is higher than it would be for a normal distribution. Such distributions
are said to be leptokurtic or fat-tailed.

(vii) Evolution of Smile/Skew over Time: Consider the following simple example of two put options
with strikes $90 and $87.5 when the underlying stock price is $100. The interest and dividend
rates are 6% and 3% and the maturity is 3 months. The market prices and implied volatilities
of the options areas follow:

Strike Price σBS

$87.5 $1.66 33%
$90.0 $1.84 30%

This is consistent with the volatility skew described above. We can go one step further and
deduce an important fact about skews and smiles. Suppose the implied volatilities for 1-year
options were the same as for 3-month options. The corresponding prices would then be

Strike Price σBS

$87.5 $5.84 33%
$90.0 $5.77 30%

This gives a higher option price for a put option with a lower strike and the same maturity,
which allows a potential arbitrage. The difference between the two implied volatilities for these
longer-term options must therefore be less than it was for the short-term options. The general
conclusion, which is confirmed by market prices, is that skews and smiles are flattened out as
the maturity of an option increases. Most skew/smile studies are confined to options of less
than 1 year.

9.2 LOCAL VOLATILITY AND THE FOKKER
PLANCK EQUATION

In the last section we saw that implied volatilities vary with the strike price and maturity of
options. This is tantamount to saying that the Black Scholes model does not quite work. The
most straightforward way of getting around this consists of assuming that volatility is a function
of both the stock price and of time, which allows us to price options consistently with each
other at any given moment in time. This is of course essential if we are ever to use one option
to hedge another, or to run them together as a “book” (Skiadopoulos, 1999).

(i) Our starting point is a table of implied volatilities σBS for various values of the strike price
and maturity. We can obtain this from the market prices for traded options, which are plugged
into the Black Scholes model (or binomial model for American options) to give the implied
volatilities. Typically we would have puts and calls for five different maturities (each month
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for 3 months and then quarterly out to 9 months), and perhaps eight different strike prices.
Generally we concentrate on the call options if we can, since traded options are more often
American rather than European and we can then use the fact that the American calls can usually
be priced using the Black Scholes model; this is not true for put options.

The reader is reminded that the implied volatility is the number squeezed out of a faulty model
when we put in observed market data. The implied volatility therefore has no relevance unless it
is plugged back into the same faulty model. In this section we seek a continuous function which
describes the true volatility for any stock price and maturity. We show below how to obtain
this from a knowledge of the market price of an option for any strike price and maturity. But
unfortunately, market prices are only quoted for discrete strike prices and maturities, so we will
need to interpolate values between real market quotations. Since prices are strongly dependent
functions of strike and maturity, it is preferable to interpolate between implied volatilities,
which are only weakly dependent on these variables. The continuous function σBS(X, T ) is
usually referred to as an implied volatility surface. We put to one side the question of what
interpolation technique is used to derive this smooth surface and just assume that for any value
of X and T we know σBS(X, T ). From this smooth implied volatility surface we can immediately
derive a smooth “market price” surface simply by using the Black Scholes model.

The question to which we now turn is what information concerning volatility can be obtained
from this price surface, that is independent of any specific option model.

(ii) In Appendix A.4 it is shown that the Black Scholes equation can be obtained by multiplying the
risk-neutral Kolmogorov backward equation by the payoff function of an option, integrating
over all terminal stock price values and finally discounting back by the risk-free rate of return.
We adopt a similar procedure here, using instead the Kolmogorov forward equation (or Fokker
Planck equation), which is derived in Appendix A.3 (see for example Jarrow, 1998, p. 429).

The underlying stochastic process is written

dST = aST T dT + bST T dWT

and the associated Fokker Planck equation is

∂ FST T

∂T
+ ∂(aST T FST T )

∂ST
− 1

2

∂2
(
b2

ST T FST T
)

∂S2
T

= 0

where FST T is the transition probability distribution function of a stock price which starts with
value S0 at time zero and has value ST at time T. In the rather cumbersome derivations below,
this is often written as FT in the interest of lightening up the notation.

The payoff function is that of a call option, (ST − X )+. This is of course a non-differentiable
function, which we will proceed to differentiate a couple of times. The reader who is troubled
by this sloppy approach should consult Appendix A.7(i) and (ii) where a more respectable
analysis is given and the following relationships are explained:

∂(ST − X )+

∂ST
= H (ST − X ) = −∂(ST − X )+

∂ X
(9.1)

∂2(ST − X )+

∂S2
T

= δ(ST − X ) = ∂2(ST − X )+

∂ X2
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9.2 LOCAL VOLATILITY AND THE FOKKER PLANCK EQUATION

(iii) Let C(X, T ) be today’s observed market value of a call option with strike X and maturity T;
again, the arguments of this function are often omitted for sake of simplicity. Equations (9.1)
are used to give the following relationships:

� C(X, T ) = e−rT

∫ ∞

0
FST T (ST − X )+ dST

�
∂C

∂ X
= e−rT

∫ ∞

0
FST T

∂(ST − X )+

∂ X
dST = −e−rT

∫ ∞

0
FST T H (ST − X ) dST (9.2)

�
∂2C

∂ X2
= e−rT

∫ ∞

0
FST T

∂2(ST − X )+

∂ X2
dST = e−rT

∫ ∞

0
FST T δ(ST − X ) dST = e−rT FXT

It is important to appreciate that these relationships do not depend on the Black Scholes model
or indeed on any particular assumption for the probability distribution of stock prices. In fact,
the last of these relationships gives a method for deriving the probability distribution if we
know the option price for all possible strike prices, i.e. if we have an option price surface in
(X, T ) space.

(iv) While the last subsection applies generally for any distribution FST T , we now make the standard
assumptions

aST T = (r − q)ST ; bST T = ST σST T

where σST T is the instantaneous (or spot or local) volatility at (ST , T ).

Multiply the Fokker Planck equation by e−rT (ST − X )+, substitute these last expressions for
aST T and bST T and integrate from 0 to ∞:

e−rT
∫ ∞

0

{
∂ FT

∂T
+ ∂((r − q)ST FT )

∂ST
− 1

2

∂2
(
S2

T σ 2
ST T FT

)
∂S2

T

}
(ST − X )+dST = 0

Take each term separately and use the relationships in equations (9.1) and (9.2):

• e−rT
∫ ∞

0

∂ FT

∂T
(ST − X )+dST

= ∂

∂T

∫ ∞

0
e−rT (ST − X )+FT dST + r e−rT

∫ ∞

0
(ST − X )+FT dST

= ∂C

∂T
+ rC

• e−rT
∫ ∞

0

∂((r − q)ST FT )

∂ST
(ST − X )+dST

= e−rT |(r − q)ST FT |∞0 − (r − q)e−rT
∫ ∞

0
ST H (ST − X )FT dST

= −(r − q)e−rT
∫ ∞

0
((ST − X )+ + X H (ST − X ))FT dST

= −(r − q)C + (r − q)X
∂C

∂ X
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where we have used ST H (ST − X ) ≡ (ST − X )+ + X H (ST − X ).

• e−rT
∫ ∞

0

∂2
(
S2

T σ 2
ST T FST T

)
∂S2

T

(ST − X )+dST

= e−rT

∣∣∣∣∂
(
S2

T σ 2
ST T FT

)
∂ST

(ST − X )+
∣∣∣∣
∞

0

− e−rT
∫ ∞

0

∂
(
S2

T σ 2
ST T FT

)
∂ST

H (ST − X )dST

= −e−rT
∣∣S2

T σ 2
ST T FT H (ST − X )

∣∣∞
0 + e−rT

∫ ∞

0
S2

T σ 2
ST T FT δ(ST − X ) dST

= e−rT σ 2
X T X2 FX T = σ 2

XT X2 ∂2C

∂ X2

Substituting these last three results into the previous equation gives

σ 2
X T =

∂C

∂T
+ qC + (r − q)X

∂C

∂ X
1

2
X2 ∂2C

∂ X2

(9.3)

Let us be clear about the notation: C = C(St , t ; X, T ) is the price at time t of a call option
with strike price X , maturing at time T. σ 2

X T = Et [[σ 2
ST T ]ST =X ] is the risk-neutral expectation

at time t of the value of σ 2
ST T at time T if ST = X . Equation (9.3) is frequently referred to as

the Fokker Planck or forward equation, which is really just a piece of shorthand. Furthermore,
slightly extravagant claims of its being the dual of the Black Scholes equation should be taken
in context: this equation works for a European call or put option; Black Scholes works for any
derivative.

(v) Several methods have been used to apply this formula, but we content ourselves with a few
general remarks. The first step in the procedure is to obtain a continuous implied volatility
surface from a few discrete points. The final answers are very sensitive to the procedures used,
which is not very reassuring. The general approaches fall into a few categories:

� Estimation procedures designed to get some statistical best fit for the implied volatility
surface as a whole; this has the advantage of eliminating obviously anomalous points
which do not reflect a systematic relationship, and it results in regular surfaces. But it does
not allow observed market prices to be retrieved and errors may swamp any information
content.

� Join the data points up with piecewise polynomials in both the strike and time axes. This is
probably the most common method with the cubic spline being the favored approximation,
since this can be twice differentiated analytically.

� Observe from equations (9.2) that there is a direct relationship between the probability density
function for the stock price and the differentials of the call option price. So equation (9.3)
relates the local volatility surface directly to the form of the probability density. Assumptions
can be made, for example that the probability density is only a small perturbation from the
lognormal form; a series called the Edgworth expansion (analogous to Taylor expansions
for analytic functions) can then be used to derive the volatility surface.
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� The most direct approach is to recast equation (9.3) in analytical form by performing the
differentials on the “Black Scholes” formula for a call option. The inverted commas are used
since the formula must use σBS and take into account that this is a function of the strike
price. The final formula will then contain first and second differentials of σBS with respect
to X. These terms may be taken directly from a cubic spline representation of the implied
volatility surface.

(vi) Once these local volatilities have been determined, they can be used within a pricing tree and
will give results which are consistent with observed short-term option prices in the market. It
would be nice if these surfaces were stable over time so that only an occasional check with
the market were needed to assure good answers. But unfortunately, this is not the case: the
surface is quite unstable and in the real world, daily recalibration is necessary. The reader
might wonder if all this effort was really worthwhile, if the only outcome is to obtain a result
which will no longer be valid tomorrow. However, it is already a big step to be able to price
all short-term options consistently with observed market prices at a given instant in time.

9.3 FORWARD INDUCTION

This technique is effort saving and extensively used whenever a tree needs initial calibration
prior to calculating prices, e.g. when smiles are being taken into account (Jamshidian, 1991).
The underlying principles and the jargon are best explained by starting with the simplest case
of a binomial model with constant volatility.

(i) The example we take is that of Section 7.3(i). The exact numbers are written out in that section
and the reader is asked to refer back to these. Remember that the essential features of this tree
are as follows:

p

1 - p

2p

2p(1 - p)

(1 - p)2

3p

(1 - p)3

23p (1 - p)

3p (1 - p)2

0

Figure 9.5 Binomial tree as probability tree

• We chose the Jarrow–Rudd discretization, setting the nodes of the tree at S0 em
√

δt where
m = −3 to +3.

• From a knowledge of the risk-neutral drift
(r − q) and variance σ 2 we calculate the
pseudo-probabilities p and 1 − p of St going
up or down.

• These pseudo-probabilities describe the time
behavior of both the stock and the call option
[equation (7.1)].

• The present value of the call option is obtained
by rolling the discounted payoffs back through
the tree, i.e. making the value of the call op-
tion at each node equal to the probability weighted sum of the option values at the next
nodes, discounted back at the risk-free rate.

(ii) We could of course have performed the calculation in the following mathematically equivalent
way. Consider the tree as a probability tree: the probability of reaching each node is shown ex-
plicitly in Figure 9.5. The final probabilities Pi are the probabilities of the binomial distribution
given in Appendix A.2(i).
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The value of an option can now be written as

f0 = f 0
0 = (e−rδt )3

∑
Pi f 3

i = 0.9833

{0.5413 × 27.76 + 3 × 0.5412 × 0.459 × 8.51} = 7.44

Clearly, the answer is the same as we got in Chapter 8, since the mathematical operation is
identical, and only the words used in describing the operation are different; but we have now
solved the problem by forward induction.

This technique could perfectly well be developed for a more complicated case involving
variable interest rate and volatility, simply by using the probability tree concept. However, the
literature has developed some further jargon and the reader needs to understand this to follow
what is going on.

(iii) Arrow Debreu Securities and State Prices: An Arrow Debreu security is one which pays out
$1 if a given node of the tree is reached, and zero otherwise. Take as an example an Arrow
Debreu security which pays $1 if the top right-hand node of the tree in Figure 9.5 is reached.
In a risk-neutral world, today’s value of this security, viewed from the origin of the tree, is
just λ3

3 = (e−rδt )3 p3 × $1 = $0.1504. This is also known as the state price of the particular
node (or “state”). Clearly, every single node in the tree has a state price as viewed from the
origin. In general, the state price equals the probability of reaching a given node, multiplied
by a risk-neutral discount factor. This holds true if the probabilities and interest rates vary
throughout the tree, or indeed if the time steps or price spacings of the tree are variable.

(iv) There is yet another, equivalent way of looking at the calculations of subsection (ii). The price
of the call option is written f0 =∑ λ3

i f 3
i , which can be given the following interpretation: if

we hold a portfolio of f 3
i units of each of the Arrow Debreu securities corresponding to each

of the final nodes (states) of the tree, the payoff of this portfolio is exactly the same as the
payoff of a call option. Therefore today’s value of the call option must be the same as today’s
value of the portfolio, i.e. equal to the state prices of the final nodes multiplied by the payoff
corresponding to each final node.

(v) Backward and Forward Trees: We now turn our attention to a tree with non-constant transition
probabilities and interest rates. In Appendix A.3 the Kolmogorov equations are explicitly
discussed in their discrete, binomial form. The more common, backward equation can be
written

P[N , j | n, i] = pn
i P[N , j | n + 1, i + 1] + (1 − pn

i

)
P[N , j | n + 1, i − 1]

where P[N , j | n, i] is the probability that the stock price reaches node level j at time step N,
assuming it started at level i at step n; pn

i is the probability of an up jump from node (n, i). It is
shown in Appendix A.3 that in the limit of infinitesimal step size, this converges to a differential
equation; it is further shown in Appendix A.4 that this differential equation is simply the Black
Scholes equation, written in a slightly unusual form.

The forward equation (Fokker Planck) is similarly written in binomial form as

P[N , j | 0, 0] = (1 − pN−1
j+1

)
P[N − 1, j + 1 | 0, 0] + pN−1

j−1 P[N − 1, j − 1 | 0, 0] (9.4)

The state price for node (N − 1, j + 1) can be written λN−1
j+1 = e−r (N−1) δt

P[N − 1, j + 1 | 0, 0] where e−r (N−1)δt is the appropriate discount factor back to the
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origin of the tree, assuming constant interest. Writing the discount factor for a single step as
e−rδt the forward equation becomes

λN
j = e−rδt

{(
1 − pN−1

j+1

)
λN−1

j+1 + pN−1
j−1 λN−1

j−1

}
(9.5)

The interesting point about this is that the state prices for the entire tree can be built up by
working across the tree from left to right (assuming we know all the transition probabilities);
this explains the expression forward induction; the above also explains the assertion that Arrow
Debreu prices are discrete solutions of the Kolmogorov forward equation.

The last equation stands in contrast to the equation for backward induction which is normally
called “rolling backward through the tree”. For a dividend-paying stock, this can be expressed
as

Si e(r−q)δt = {pn
i Si+1 + (1 − pn

i

)
Si−1

}
(9.6)

(vi) Green’s Functions and Arrow Debreu Prices: The reader is reminded that the price of an
option is given by

f (S0) = e−RT
∫

all ST

f (ST ) F[xT , T | x0, 0] dxT ; xt = ln (St/S0)

where f (ST ) is the option payoff. Comparing this with a general equation of the form of
equation (A7.6), it is clear that e−RT f [xT , T | x0, 0] is a Green’s function. But the probability
P[n, i | 0, 0] used in the last subsection is just the discrete time analog of the transition density
function F [xT , T | x0, 0]. It follows immediately that the Arrow Debreu prices are simply the
Green’s functions expressed in discrete time.

This section is a little like an elaborate literary reference: it stitches together a number of
disparate concepts and allows us to understand what our colleagues are talking about; but it
does not really introduce any new concepts – just new words. It has been explicitly pointed out
that a tree is a representation of both the forward and backward Kolmogorov equations; that
Arrow Debreu prices are solutions of the forward (and backward) equation and can be regarded
as a Green’s function in discrete time; that by concentrating on the forward equation we can
work out state prices from left to right in the tree and use the result to compute an option price.
We could of course have just explained forward induction from the fundamental properties of
probability trees, but the reader also needs to understand the gratuitous references made in the
literature if he is to keep up.

9.4 TRINOMIAL TREES

(i) Binomial Tree with Variable Volatility: Let us consider a binomial tree of the type studied
extensively in Chapter 7. It was assumed that volatility is constant throughout the tree; we now
relax this idealized assumption, and consider the case where volatility varies both over time
and with stock price. This means that the volatility at each node is different and in consequence,
the sizes of steps and the transition probabilities are also variable. In each cell of the tree, there
are two relationships corresponding to equations (7.5):

1 + (r − q)δt = pi ui + (1 − pi )di
(9.7)

σ 2
i δt = pi (1 − pi )(ui − di )2
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1 degree of 
freedom
for each cell 

Lose 1 degree of
freedom for each
recombination

Figure 9.6 Binomial tree (variable volatility)

With two equations for three unknowns, we
have some discretion. Making the simplifying
choice ui = d−1

i (Jarrow–Rudd) then gives us
no further choices; we must have ui = eσi

√
δt .

Unfortunately, if the σi are different at each
node, we would no longer have the nice reg-
ular binomial trees of Chapter 7, but something
more like the tree of Figure 9.6. Jarrow–Rudd
is of course only one of many possible choices.
It is possible that some other choice of discre-
tionary variable would give a better looking tree.

(ii) Let us consider the third column of cells in
the diagram. Each of the three cells has a pair of relationships given by equations (9.7), i.e.
each cell has one degree of freedom, or parameter which we are free to choose. The three cells
in the column therefore have a total of three degrees of freedom. We need the tree to recombine
if it is to be of any practical use, so there are two constraints that must be imposed: each of the
two inside nodes in the final column must be reachable by either an up- or a down-jump. These
two constraints eat up a degree of freedom each so that we are left with one degree of freedom
for the entire third column of cells. Similar reasoning shows that there is only one degree of
freedom for every column in the tree: we have therefore lost nearly all of our flexibility in
being able to choose step sizes. The most we can do to improve the appearance of the tree with
our one degree of freedom is to line up the central nodes.

One rather desperate solution is to introduce an extra degree of freedom by making the time
step length into a variable. We are then able to make the nodes line up horizontally, although
at the expense of unequal time step lengths; there is little improvement in terms of ease of
computation. Clearly, we need to look for a better type of tree.

up

mp

dp

0S mS = mS

uS = uS0

dS = dS0

dt

0

Figure 9.7 One cell of trinomial tree

(iii) Trinomial Tree: We turn our attention to the three-
pronged tree which is briefly described in terms of the
arithmetic random walk in Appendix A.1(iii). As in
the case of the binomial tree, we choose to examine the
evolution of the stock price, rather than its logarithm. A
single cell in the process is then represented by Figure
9.7. The fundamental equations relating the various pa-
rameters to the observed interest rate and volatility [the
analogue of equations (9.7)] are simply written:

1 + (r − q)δt = puu + pdd + (1 − pu − pd )m
(9.8)

σ 2δt = puu2 + pdd2 + (1 − pu − pd )m2 − (1 + (r − q)δt)2

The immediate reaction is that we now have an abundance of degrees of freedom: there are
five unknowns constrained by two equations. As with the binomial tree, there are an infinite
number of ways of choosing our parameters. For computational convenience, it is sensible to
make the tree regular by making the following choices:

m = 1; u = d−1 = e	
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9.4 TRINOMIAL TREES

With m = 1, equations (9.8) become (to O[δt])

(r − q)δt = pu(u − 1) + pd (d − 1)
(9.9)

(σ 2 + 2(r − q))δt = pu(u2 − 1) + pd (d2 − 1)

Make the substitution u = d−1 = e	, expand the exponential and retain only terms of order
O[δt] and O[	2]. A quick romp through the algebra then yields

pu = σ 2 + 	
(
r − q − 1

2σ 2
)

2	2
δt ; pd = σ 2 − 	

(
r − q − 1

2σ 2
)

2	2
δt ; pm = 1 − σ 2

	2
δt

(9.10)

These are of course the same relationships as we obtained in equation (A2.8) for the three-
pronged arithmetic random walk, except with the term 1

2σ 2 which routinely appears when we
go from the normal to the lognormal distribution.

It is essential to understand this result compared with its counterpart for the binomial model.
In Section 7.2(ii) we put u = d−1 to give the Jarrow–Rudd arrangement; this defined the value
of 	(= σ

√
δt). However, in the trinomial case we can choose u = d−1, and still retain the

possibility of choosing 	 independently. The impact of this extra degree of freedom is immense.
When we are confronted with a variable volatility problem, we can fix the numerical value of
	 to be the same throughout the tree, with the variation in volatility from node to node reflected
entirely by variations in the probabilities at different nodes. The geometry of the tree remains
fixed and regular.

(iv) Optimal Spacing (Constant Volatility): Before commenting on how to choose 	 when volatil-
ity is variable, consider the choice for a constant volatility tree. We allow ourselves to be
prompted by our study of finite difference equations in Section 8.1 and Appendix A.9. It was
shown in Section 8.1 that if we solve the Black Scholes equation using a finite difference ap-
proach, a particularly efficient solution was obtained using the so-called Douglas discretization.
This requires the choice

α =
{

1
2σ 2δt

(δx)2

}
= 1

6

where x is the logarithm of the stock price. With this choice, the finite difference method
was shown in Appendix A.9 to be formally equivalent to a trinomial tree. It therefore seems
sensible to make the same choice, which in the notation of this section is written as u =
d−1 = eσ

√
3δt . Making the substitution 	 = σ

√
3δt in equations (9.10) immediately gives the

results

pu = 1

6
+ (r − q − 1

2σ 2
)√ δt

12σ 2
; pd = 1

6
− (r − q − 1

2σ 2
)√ δt

12σ 2
; pm = 2

3

(9.11)

One particular requirement that must be fulfilled if a trinomial tree solution is to be stable is
that the probabilities pu , pd and pm must not only sum to unity, but must also each be positive.
The discretization of equation (9.11) more or less assures that this condition is fulfilled in any
real-life case, but it is always worth checking.
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9 Variable Volatility

(v) Spacing with Variable Volatility: We cannot of course use equation (9.11) for variable volatility;
it would lead to variable 	 and the whole purpose of this section was to discover a tree
with constant step size. Instead, we revert to equation (9.10), and a favorite choice is 	 =
σl arg est

√
3δt , where σl arg est is the largest local volatility encountered in the tree.

9.5 DERMAN KANI IMPLIED TREES

There are two common approaches to pricing options in the presence of variable volatilities
or interest rates: the first consists of calibrating a trinomial tree using observed market prices
of options and then using the same tree to consistently price other, unquoted options (Derman
et al., 1996). The second approach uses the Fokker Planck equation (9.3) to extract a continuous
expression for the volatility as a function of strike and time to maturity. The results can then
be used in a variety of types of computation (trees, Monte Carlo, finite differences). We now
examine the first approach.

(i) The procedure is best explained with a concrete example, and we will try to make this as simple
as possible. Assume we have a stock with price S0 = 100, interest rate r = 8% and continuous
dividend q = 3%. Prices of call options quoted in the market are as given in Table 9.1.

Table 9.1 Quoted European call option
prices ($)

Strike: 1 month 4 months 7 months

80 20.28 21.30 22.43
90 10.48 12.56 14.31

100 2.62 5.69 7.86
110 0.12 1.83 3.64
120 0 0.36 1.32
130 0 0.04 0.37

We set ourselves the objective of building a tree to price 6-month options. For the reasons
given in the last section, this is best achieved by means of a trinomial tree. We choose a
three-step tree, so that the length of each step is 2 months. We further choose the spacing
as e	 where 	 = 0.25 × √

3δt = 0.1786 or e	 = 1.1934. This is in line with the spacings
suggested for a tree with variable volatility in the last section. The tree is set out in Figure 9.8;
to make the tree fully functional, we need to find out the transition probabilities at all the
nodes.

(ii) State Prices in a Trinomial Tree: We now apply the analysis of Section 9.3 to a trinomial tree.
The state price λn

i is the value at node zero of an Arrow Debreu security which pays out $1 if
(and only if) the node at time n and stock price level i is reached. It was shown that the node
zero value of a European option maturing at time step n can be written f0 =∑i λn

i f n
i , i.e. the

payoff multiplied by the state price, summed over all final nodes.
Let us now imagine that we know the market prices of a put or a call option for any strike X,

maturing in 6 months. We can write the market prices of these options as C6 m
X and P6 m

X ; their
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6 m
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Figure 9.8 Trinomial tree

payoffs in 6 months are of course, max[S6 m − X, 0] and max[X − S6 m, 0]. Referring back to
the trinomial tree of the last subsection, we can write

C6 m
142.41 =

∑
i

λ6 m
i max[S6 m − 142.41, 0]

The payoffs at all the nodes below the top right-hand one are zero, so this last equation reduces
to

C6 m
142.41 = λ6 m

+3 (169.95 − 142.41)

The next state price down in the final column can be obtained from the analogous equation

C6 m
119.34 = λ6 m

+3 (169.95 − 119.34) + λ6 m
+2 (142.41 − 119.34)

Since we already know the top state price λ6 m
+3 from the previous equation, we can obtain λ6 m

+2 ;
and so on down the final column of nodes. We will need one additional relationship to calculate
the final node down. This is provided by the normalizing relationship �i λ6 m

i = e−8%×6 months:
remember that the state prices are really probabilities of reaching final nodes multiplied by
discount factors, and the probabilities sum to unity.
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9 Variable Volatility

We have very simply derived the final state prices from observed market prices, and can
therefore price any 6-month option whose payoff depends only on the price in 6 months; all
this without reference to volatilities or transition probabilities!

(iii) Interpolations: The last subsection begs a huge question: where do we get market prices of
call options for the precise strikes needed in the trinomial tree? The only practical way of
obtaining something useful is by a process of interpolation, starting with the observed market
prices quoted in the table.

Table 9.2 Implied vols of quoted calls (%)

Strike: 1 month 4 months 7 months

80 25.10 23.71 23.06
90 23.19 22.89 22.46

100 21.02 21.34 21.55
110 19.23 20.42 20.85
120 17.87 19.24 19.87
130 17.04 18.38 19.07

As was previously explained, interpolation between option prices is best carried out via
an interpolation between implied volatilities, since these move slowly with changes in strike
price or maturity. The call option prices of Table 9.1 translate into the implied volatilities
of Table 9.2 if we apply the Black Scholes formula. In the real world, we would at this
point be finessing the data to make sure that there are no obvious anomalies, outliers or
mistakes.

Interpolations and extrapolations have to be made in two directions: with respect to time
and with respect to stock price. The technique most commonly used in practice is the cubic
spline which is described in Appendix A.11, but here we use simple linear interpolation.
Our objective is first to obtain implied volatilities and hence option prices, for maturities and
stock prices corresponding to the nodes of the trinomial tree. This is done in two steps, first
interpolating the rows for maturities 2, 4, and 6 months; then the new columns are interpolated
for the specific strikes equal to stock values at the nodes. Finally the interpolated implied
volatilities are turned back into “market prices”, with the desired strikes and maturities. See
Table 9.3.

Table 9.3 Interpolations

Interpolated Implied Vols (%) Interpolated “Market Prices” ($)

Strike: 2 months 4 months 6 months 2 months 4 months 6 months

58.84 — — 24.72 — — 41.98
70.22 26.15 24.51 23.95 30.21 30.65 31.11
83.80 24.05 23.40 23.02 16.91 17.82 18.75

100.00 21.13 21.34 21.48 3.84 5.69 7.19
119.34 18.41 19.32 19.73 0.04 0.40 1.04
142.41 16.44 17.31 17.82 0 0 0.02
169.95 — — — — — —
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9.5 DERMAN KANI IMPLIED TREES

(iv) Returning to the theme of subsection (ii) above, we have derived the state prices for each final
node of the tree and can therefore price any European option. Obviously, if we were trying
to price a European call or put, it would be simpler just to interpolate as we did to find the
“market prices”. However, there are European options other than puts and calls which may
need to be priced. And then there is the matter of American options, which cannot be priced
without a knowledge of all the intermediate probabilities in the tree. These are obtained from a
knowledge of all the state prices in the tree. The first step therefore is to repeat the calculations
of subsection (ii) for each column of nodes in the tree, using the interpolated “market prices”
of the call options at each node. The results are given in Table 9.4.

Table 9.4 State prices in trinomial tree

Node Level λ0
0 λ2 months

i λ4 months
i λ6 months

i

58.84 0.0008
70.22 0.0175 0.0434
83.80 0.1984 0.2555 0.2736

100.00 1 0.6088 0.4763 0.3958
119.34 0.1796 0.1950 0.1965
142.41 0.0293 0.0455
169.95 0.0051
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Figure 9.9 Detail from trinomial tree

(v) Transition Probabilities: Just as we found a
simple iterative process for calculating state
prices from call option prices, so we can
derive the transition probabilities from the
state prices. This is illustrated in Figure 9.9,
which is a snapshot of the top right-hand
corner of the trinomial tree of Figure 9.8.
The calculation proceeds in a recursive, two-
step process which alternately uses the for-
ward and backward induction described in
Section 9.3(v):

(A1) Forward induction connects state
prices at successive time steps, and is given
explicitly for the binomial tree by equation
(9.5). A precisely analogous relationship
holds for the trinomial tree: taking the very
top branch in the diagram, the formula for
λ6 m

3 has the simple form

λ6 m
3 = e−rδt (pu)4 m

2 λ4 m
2

where (pu)4 m
2 , (pm)4 m

2 and (pd)4 m
2 are the transition probabilities in 4 months; e−rδt = 0.9868

is the one-period discount factor. This leads immediately to (pu)4 m
2 = 0.0439 for the top 2-

month probability.
(B1) Backward induction (risk neutrality) gives

S2 e(r−q)δt = (pu)4 m
2 S3 + (pm)4 m

2 S2 + (pd)4 m
2 S1

121



9 Variable Volatility

e−(r−q)δt = 0.9917 and probabilities sum to unity: (pu)4 m
2 + (pm)4 m

2 + (pd)4 m
2 = 1. Using the

result we found for (pu)4 m
2 , these last two equations may be solved to give (pm)4 m

2 = 0.9555
and (pd)4 m

2 = 0.0007.
(A2) Forward induction for the second state price down in the last column is

λ6 m
2 = e−rδt

(
(pm)4 m

2 λ4 m
2 + (pu)4 m

1 λ4 m
1

)
We already know (pm)4 m

2 so we can calculate (pu)4 m
1 = 0.1066.

(B2) Backward induction applied to the second cell down gives

S1 e(r−q)δt = (pu)4 m
1 S2 + (pm)4 m

1 S1 + (pd)4 m
1 S0

And so on . . . .
The process is continued for the entire column of cells and the same method is used for all

columns in the tree, finally yielding the values of all probabilities given in Figure 9.10.
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Figure 9.10 Transition probabilities

(vi) Use of Put Options: For most practical purposes, call options are easier to work with than
puts. For one thing, American and European calls are usually the same price so that we can
use market data on American traded options to build our trees; this is not true of put options.
However, from the iterative methods of calculating state prices (and hence probabilities) in
subsections (ii) and (v), it is clear that any errors or anomalies in the market price of a call option
are transmitted to the calculated probabilities at all the lower nodes. If European put option
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prices are available it is therefore safer to use these to fill in the lower part of the tree, using
precisely the same reasoning as was used for converting call option prices to probabilities.

(vii) Conclusion: In this section we have achieved the calibration of a trinomial tree using the
observed market prices of options. The tree may then be used to price whatever option we
wish. In practical terms, this means that each morning we can feed a set of quoted prices into
a machine and use the same machine to price and manage a portfolio of instruments on the
same underlying security. Clearly, the machine will need frequent recalibration as the markets
move; but this is easily achieved by feeding a new set of market prices into the machine.

9.6 VOLATILITY SURFACES

An alternative to the approach of the last section is to use equation (9.3) to obtain the risk-
neutral expectation of the local volatility at each point in the T –X plane; this is usually called
the volatility surface. The principal difference between this and the Derman Kani approach is
that here we are not automatically provided with a procedure for calculating new option prices.
We derive the local volatility surface from equation (9.3), i.e. we derive values for the local
volatility at a densely packed set of points in the T –X plane. We then use these values in a
Monte Carlo program or a tree or a finite difference calculation; the choice is ours. With the
Derman Kani method, we are confined to the calibrated tree.

This approach shares a problem with Derman Kani: there are just not enough traded options
to give market prices for densely packed points in the T –X plane. We therefore use the same
device as before, interpolating implied volatilities and hence using estimated “market prices”
for any point we choose. Equation (9.3) calls for first and second derivatives of estimated market
prices. The true, observed market prices are likely to be somewhat jerky but our estimating
procedures will smooth these sufficiently to obtain sensible results; a concrete example follows.

(i) Empirical Distribution Functions: Let us examine the term ∂2C(X, T )/∂ X2 which occurs
in the denominator of equation (9.3), using precisely the same data that was used in the last
section. In addition to being a part of the volatility surface calculation, this term has an interest
in its own right: apart from a discount factor, it is the true probability distribution function for
the underlying stock price movements.
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Figure 9.11 Empirical stock price pdf

The starting point for this calculation is
the set of interpolated values for the option
prices given in Table 9.1, and we will de-
rive values for ∂2C/∂ X2 at each of the grid
points implied by the table. First, we must
make some assumption about the form of
the function C(X, T ): after all, we have
only been given a set of discrete points, not
a continuous differentiable function. One
of the simplest assumptions to make is the
cubic spline assumption, i.e. that C(X, T ) is a set of cubic functions between observed data
points, arranged so that there are no discontinuities in the first or second differentials at the
data points; this is described in detail in Appendix A.11, where it is seen that the first and
second differentials of the curve at each point are naturally produced as a by-product of the
fitting procedure. The values of ∂2C/∂ X2 corresponding to the observed data of Table 9.2 are
multiplied by erT to give the probability distributions and these are plotted in Figure 9.11.
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For each maturity we have only taken six points so the curves are fairly grainy; however,
the general form is as expected. The slightly negative (and therefore impossible) value arises
from the numerical procedures of trying to fit the data points with a piecewise cubic function.

Suppose we now wish to improve on the graph and get a better result for the 4-month
maturity. We have no more market prices to use and must therefore rely on the interpolation
procedure. It has already been pointed out that option prices vary rapidly with strike price so
that it is better to interpolate between implied volatilities. The procedure might therefore be
as follows:

� Take the 4-month prices from Table 9.2 and convert these to implied volatilities using the
Black Scholes formula.

� Use cubic spline to interpolate between these volatilities.
� Use Black Scholes to convert the interpolated implied volatilities to option prices for X =

80, 81, . . . , 130.
� Use the cubic spline interpolation method of Appendix A.10 to find the value of ∂2C/∂ X2

at each point X = 80, 81, . . . , 130.

(ii) Instantaneous Volatilities: The steps taken to obtain the values of ∂2C/∂ X2 for 4 months to
maturity and a relatively dense set of points X = 80, 81, . . . , 130 can be repeated to obtain
values of ∂C/∂T for a densely packed set of points between 1 month and 7 months. Again,
interpolation between implied volatilities for market observed prices is recommended as a first
step. The result is that we can find the call option prices and their derivatives for a densely
packed set of points in the T –X plane. This allows us to derive the value for local volatility at
any point, using equation (9.3). This local volatility is of course not the same as the volatility
for stock price movements between successive points, but the two values converge as the point
spacing becomes infinitesimal.

124



10

Monte Carlo

10.1 APPROACHES TO OPTION PRICING

(i) In order to put Monte Carlo techniques into perspective, we recall and classify the techniques
that have been used to price options.

1. If we know the form of the payoff and the risk-neutral probability density function of the
final stock price ST , then the option price is simply

f = e−rT
∫ ∞

0
P(ST ) × φ(ST ) dST = e−rT

∫ ∞

0
P(ST ) d�T

where φ(ST ) is the risk-neutral probability density function, �T is the cumulative prob-
ability function and P(ST ) is the payoff; elementary statistical theory allows us to write
φ(ST ) dST = d�T . In various parts of the book we perform this integral explicitly for
European puts and calls, binary options, knock-in options, etc.

2. From a knowledge of the boundary conditions governing the option in question, we may
be able to solve the Black Scholes equation. Explicit solutions are given in the book for
European puts and calls and for knock-out options.

3. Both of the last two methods yield an analytical answer, i.e. a formula. Although they seem
on the surface to be unrelated, they are in fact doing the same thing using different tools.
It is shown in Appendix A.4(i) that the Black Scholes equation is just the Kolmogorov
backward equation for φ(ST ), after it has been multiplied by the payoff and then integrated.
Unfortunately, these two analytical approaches only succeed in pricing a small fraction of
all options.

4. The most common numerical approach to pricing options is to approximate the probability
density function by a discrete distribution. The integral of method (1) above then becomes
a summation:

f = e−rT
∑

i

Pi × �i

In Chapters 7 and 9 we use binomial and trinomial distributions to approximate the normal
distribution which we assume to be followed by ln St . These methods, known collectively
as “trees”, vastly expand our ability to price options. Three categories are of particular
importance:

� American and Bermudan options are readily soluble.
� Variable volatilities and interest rates can be accommodated.
� A whole range of exotic options can be priced.

5. Numerical methods for solving the Black Scholes equation are an alternative to the tree
methods of method (4), and are used to solve broadly the same range of problems. Some
of these methods are shown in Chapter 8 to be formally equivalent to trees; others are used
because they are computationally more efficient.
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6. Another numerical method of calculating f is numerical integration. In its simplest forms
(“middle of the range” or trapezium rules), this method amounts to the same thing as
method (4) above, i.e. we are adding the areas of a lot of rectangular strips of height P(ST )
and width δ�T . This last method, numerical integration, has never become particularly
popular in option pricing, perhaps because the equivalent tree methods are more intuitive
and graphic. Yet all the above numerical methods can be conceptually regarded as methods
of numerical integration, by adding the areas of strips under a curve.

(ii) This chapter is about a different approach to numerical integration. Referring to Figure 10.1,
there are two methods of finding the area under the curve.

a b

c

dx

f(x)

x

Figure 10.1 Numerical integration/
Monte Carlo

• Divide the X – Y plane into little squares and count
how many lie below the curve (perhaps using some
correction factor for the squares which overlap the
curve).

• Scatter random points across the dotted rectan-
gle and count what fraction lie below the curve. This
fraction multiplied by c × (b − a) is an estimate of
the area under the curve.

The first method is the familiar “adding areas of strips”
approach; the second is called Monte Carlo.

When applied to option pricing, the mechanics are
simple: calculate an option payoff Pi for a randomly selected path of the stock price between
t = 0 and T . Repeat the operation many thousands of times (N ), making sure that the random
paths are all taken from a distribution which adequately reflects the distribution of St . The
Monte Carlo estimate of the t = 0 value of the option is just

f = e−rT 1

N

∑
i

Pi

(iii) The Curse of Dimensionality: The option pricing approaches (1) to (6) above share a major
failing: they cannot handle path-dependent options in a general way. The reader is entitled to
be more than a little surprised at this assertion since large chunks of this book are devoted to
elegant and efficient methods of pricing knock-outs, look-backs, Asian options, etc. But we are
able to price these because we have been able to find a nice regular distribution for variables
of interest such as the maximum value or the geometric average of St over a given period. This
is a long way from solving the general path-dependent problem.

To make this clearer, consider a path-dependent option of maturity T with two monitoring
points t1 and t2, e.g. points used for taking an average or testing if a knock-out has occurred.
This is represented in Figure 10.2, where the ladders at each point in time are intended to
schematically represent the stock prices achievable. The stock prices St1 , St2 and ST are three
distinct although correlated stochastic variables, so what we have is really a three-asset problem.
The correlation coefficients are known exactly, being the square roots of the ratios of the times
elapsed [see Appendix A.1(iv)]. The price of any path-dependent option has the general form

f =
∫ ∫ ∫

P(St1 , St2 , ST ) φ (St1 , St2 , ST ) dSt1 dSt2 dST
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0 t1 t2 T

Figure 10.2 Path-dependent option as
multidimensional option

where P(St1 , St2 , ST ) is the payoff and φ(St1 , St2 , ST )
is the joint distribution function. Except for the most
trivial examples, a multiple integral of this type would
have to be evaluated numerically. The simplest way of
doing this is by using a three-dimensional equivalent
of the addition of strip-shaped areas: and here we see
the beginnings of an intractable problem.

Suppose we divide the range of integration for each
of our stochastic assets into just 10 slices. The number
of separate little calculations to perform the integration is 103; no matter, that’s what computers
are for. But a three-step problem is too simple. A more realistic example might be a 1-year option
with weekly monitoring, and we would then be looking at 1052 separate little calculations. This
is what Bellman called the curse of dimensionality.

The position is not improved if we decide to abandon numerical integration and just work
with trees. Section 12.6 describes a binomial tree applied to two stochastic assets, and it is
immediately apparent from its geometry that the number of calculations increases as N 2.
Extending to d stochastic assets (dimensions) leads us to exactly the same dead-end that we
hit with numerical integration.

The reader should now ask “if it’s so difficult, how come we have simple procedures for
evaluating knock-out options, either analytically or using a simple (one-dimensional) tree?”.
The answer is that we have been clever enough to work out distributions for specific quantities
such as Smax or Smax or min or Sgeometric av; but how would you value a 1-year option with weekly
monitoring if the payoff is as follows:

� Knock-out if any sequence of five weekly stock prices has each price greater than the last.
� Otherwise, a call option.

Here we seem to have no choice other than the multiple integral or tree approach; this is where
Monte Carlo comes to the rescue.

(iv) Errors: Suppose we evaluate the d-dimensional integral using a total of N data points, allocating
N 1/d data points to each of the d variables over which we integrate. Any calculus textbook
covering numerical integration will explain how the error arising from the use of either the
mid-point rule or the trapezium rule is inversely proportional to the square of the number of
data points. The error in our multiple integration is therefore proportional to N−1/d .

10.2 BASIC MONTE CARLO METHOD

(i) Stock Price Simulation: In nearly the whole of this book, it is assumed that the risk-neutral
stock price evolution follows equation (3.7):

St = S0 e(r−q− 1
2 σ 2)t+σ

√
t zi ; zi ∼ N (0, 1)

Obviously, the way in which we use this formula will depend on the specific problem to be
solved. In the following subsections we look at three simple examples: a European call, a
knock-out call and an Asian option. For the European call, we need only the terminal values,
so each simulation will just give us a random terminal value ST .

The other two options are path-dependent so each simulation will need to be an entire
random path. This is approximated by a discrete path with successive values given by the same
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formula in a slightly modified form:

St+δt = St e(r−q− 1
2 σ 2)δt+σ

√
δt zi ; zi ∼ N (0, 1)

We chose the δt to be the time between discrete monitoring or averaging points.

(ii) Estimates: The values zi in the last subsection are standard normal random numbers. Sec-
tion 10.3 will explain how these are obtained. For each set of random numbers, a stock price
path is calculated and the payoff of the option corresponding to this path is calculated; this is
a single simulation. The process is repeated a large number of times N, and an estimate for
the expected value of the payoff is obtained by taking the average of the answers obtained for
all the simulations. Finally we must take the present value of this expected payoff to get the
option value.

This is in accordance with the following elementary statistical definitions and results:

� If fi is the option value calculated in a single simulation, then an unbiased estimate of the
mean of all possible fi is equal to the sample average

f̄ = 1

N

∑
i

fi

� The unbiased estimate of the variance of all the fi is

var[ fi ] = SD2 = 1

N − 1

∑
i

( fi − f̄ )2

� The standard error of f̄ is

SE =
√

var〈 f̄ 〉 = SD√
N

� The f̄ are normally distributed with mean f (the true option value) and variance SE2.

(iii) Errors: From the last few lines it is obvious that the Monte Carlo method converges to the
right answer with an error proportional to N−1/2; compare this with the error proportional to
N−2/d for numerical integration or trees. The key point is that the Monte Carlo error does not
depend on the number of dimensions of the problem. We do not of course know the constants
of proportionality for either error, but the variable term for multiple integration shoots up so
quickly with d that beyond a very few dimensions, Monte Carlo is more efficient.

It is instructive to look at three simple examples which we use later in this chapter. In each
of the three cases (a simple European call, a knock-out call and an Asian call), a 20,000 shot
simulation run is already yielding reasonable option prices with errors in the region ±1% of the
option prices and running times on a laptop of less than a minute. Now compare the alternative
calculation methods for each example:

� The call option is a one-dimensional problem, having no path dependence. The numerical
integration alternative would divide the range of integration into 20,000 slices; or we could
build a tree with 20,000 steps. Either way, we would have produced an incredibly accurate
answer, compared with the ±1% we have produced here. Alternatively, we could have solved
the integration analytically: this is called the Black Scholes model.

� The knock-out option has 52 monitoring points. We can derive a continuous distribution for
the maximum value of the stock price and hence evaluate a continuously monitored knock-out
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option analytically. Alternatively, we can build a simple tree to evaluate the option [not a
52-step tree as this would be too small for accurate answers (see Section 16.5), but some
multiple of 52]. We saw in Section 10.1 that this simple knock-out is a “special case”.

Suppose instead that we tried to solve this problem by multiple integration or trees, which is
what we would have to do if the knock-out feature were more complex. We devote two points
to each dimension, i.e. divide the domain of integration into two slices in each dimension
or equivalently, construct a multidimensional tree with only two steps for each asset. This
would be hopelessly inadequate for an accurate answer, but would still take 252 ≈ 5 × 1015

calculations. Our Monte Carlo calculations consisted of 20,000 shots where each shot is a
path of 52 steps, i.e. about a million calculations.

� The arithmetic average (Asian) option also has 52 monitoring points. Unlike the simple
knock-out example, we cannot derive a distribution for a state variable Sarithmetic av and must
therefore go straight to the long-winded computation (this is not true for the geometric
average option but these are not really traded in the market). Here again the Monte Carlo
method takes about 106 calculations to yield an error of around ±1%, while numerical
integration would take 5 × 1015 calculations for an inadequate answer.

So how does Monte Carlo manage to be so much more powerful than numerical integration,
which we normally think of as a fairly efficient procedure? The answer is a combination of two
parts: first, by its very nature the majority of Monte Carlo paths used in a simulation are the
most probable paths. The calculation procedure wastes little time in exploring regions where
paths are unlikely to fall. By contrast, tree methods spend equal calculation time on a remote
node at the edges as they do on a highly probable node at the center. Similarly, numerical
integration spends as much effort on a strip at the edge of a distribution as on one in the
center.

The second part of the answer lies in the arithmetic effects of exponentiation. Suppose
that in a one-dimensional tree, only 70% of the calculations really contribute appreciably to
a pricing. If this is repeated in each of 52 dimensions, then only 0.752 = 0.000001% of the
multidimensional tree contributes to the pricing; the rest are wasted calculations.

(iv) Strengths and Weaknesses of Monte Carlo: From what has been written in the last couple
of pages it is clear that Monte Carlo is the only feasible approach to solving the general
multidimensional problem (except for a few special cases). We have described this in terms of
general path-dependent options, but there are other multidimensional pricings where Monte
Carlo is the method of choice: most particularly spread options involving several assets, for
which analytical methods are inadequate.

Quite apart from these theoretical considerations, Monte Carlo has immensely wide appeal.
Just about any final payoff can be accommodated and the method can be manipulated by
computer programmers with little knowledge of either mathematics or finance. It is the ultimate
fall-back method, which works when you cannot think of anything else, or do not have the
time or inclination to be analytical. We have all at some time got fed up with working on a
problem and instead just switched on the simulator overnight, to find a highly accurate answer
on our screens in the morning.

Despite all these advantages, Monte Carlo does have an Achilles heal: American options.
Recall the binomial method of calculating an American option price. Starting at the maturity
date, we roll back through the tree by discounting the expected option values to previous nodes
[see Section 7.3(iv)]. At each node we compare the discounted-back value with the exercise
value at that point; if the exercise value is larger, we assume that the American option is
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terminated at this node, and we substitute the payoff for the option value. The key point is
that the method inherently allows us to compare the option value with the payoff value at each
point in the tree. With the Monte Carlo method, we can calculate the payoff at each point on
our simulated path, but there is no way of comparing this with the option value along the path.
Inevitably, methods have been found around this inherent problem and encouraging results
have been claimed; but one cannot help feeling that it is better to go with an approach that
is intrinsically better suited to American option pricing. Water can be pushed uphill, but why
bother if you don’t have to?

10.3 RANDOM NUMBERS

(i) In the last section we outlined the Monte Carlo method in its simplest form and rather glibly
stated that zi are random numbers taken from a standard normal distribution. What does this
mean and where do we get the zi from? The first question is simple: the zi are random numbers
for which the probability of a number falling in the range

zi to zi + δzi is
1√
2π

e− 1
2 z2

i δzi .

The second question is more difficult and there are several issues which concern Monte
Carlo specialists as set out below.

(ii) Pseudo Random Number Generators: For most people the starting point is a Rand () function
on a PC which purports to produce standard uniform random numbers xi , i.e. evenly distributed
from 0 to 1. We show below how to manufacture the standard normal random numbers zi from
these xi . It should be pointed out straight away that a computer cannot produce a set of random
numbers. Computers are logical devices and any calculation the machine performs must give
the same answer however many times the calculation is carried out. We therefore have to
content ourselves with pseudo-random numbers which behave as though they are random. In
commercial packages these are nearly always produced by the following iterative procedure:

� Generate a set of integers ni as follows:

ni+1 = (ani + b) mod N a, b, N integers

� The standard uniform random numbers are given by

xi = ni

N
n mod N is defined as the integer remainder left over when n is divided by N.

A simple example of this procedure for ni+1 = (2ni + 1) mod 5 is given in Table 10.1. This
slightly laborious example is given to illustrate a couple of points:

Table 10.1 Random number generator

n0 = 1 x0 = 0.2
n1 = 3 mod 5 = 3 x1 = 0.6
n2 = 7 mod 5 = 2 x2 = 0.4
n3 = 5 mod 5 = 0 x3 = 0.0
n4 = 1 mod 5 = 1 x4 = 0.2
n5 = 3 mod 5 = 3 x5 = 0.6
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� The sequence of xi are completely determinate. The same number is always produced given
the same starting point n0 = 1. If we started with a different seed n0 = 1

2 we would get
a different set of random numbers. Most computers either start with a seed related to the
precise time of day (fraction of day elapsed) or they use the last random number that was
generated last time it was used; this way the computer does not keep repeating the same
“random numbers”. However, there are ways of fixing the seed so that we can repeat the
same sequences (see for example the Visual Basic instructions in the Excel help index).

� n5 is the same as n1 and will keep repeating every five iterations – forever. This generator
will only produce five different random numbers. We therefore want N to be large.

So how do we find a, b and N? Unfortunately there is no simple recipe for doing this. We
know that we want a to be big and b to be very big. But beyond that it is largely a question of
trial and error. Researchers have performed elaborate statistical tests on the random numbers
produced by the different combinations of a, b and N and have found that there are definitely
good combinations and bad combinations. The majority of derivatives professionals just hit
the Rand () function and hope for the best. Some fastidious quants go to sources such as Press
et al. (1992) and copy out well-tested procedures (“RAN2” is recommended). The few who
go any further find themselves with a substantial research project on their hands.

(iii) Normal Random Numbers: There is a 45% probability that a standard uniform random number
will be less than 0.4500. Similarly, there is a 45% probability that a standard normal random
number will be less than −0.1257: in the notation used elsewhere in this book, 0.4500 =
N[−0.1257], which could also be written −0.1257 = N−1[0.4500].

We can convert the standard uniform random numbers produced by a random number
generator into standard normal random numbers with the transformation

RANDnormal = N−1[RANDuniform]

There are standard routines to perform this; in Excel it is just the function NORMINV(). The
trouble is that this function cannot be expressed analytically and is slow to calculate.

The ultimate objective is usually to obtain normal random numbers rather than to make
the conversion. There follow two methods for manufacturing normal random from uniform
random numbers, rather than transforming them one by one.

(iv) Sum of 12 Method: The simplest way of producing an approximately standard normal random
number is as follows:

� Take 12 standard uniform random numbers x j .

� Then zi =
(

12∑
j=1

x j

)
− 6 is a standard normal random number.

The reason for this is straightforward: the central limit theorem tells us that whatever the
distribution of x j , the quantity

∑n
j=1 x j tends to a normal distribution; furthermore, a simple

calculation shows that by choosing n = 12, the mean and variance of zi are exactly 0 and 1. Of
course, the central limit theorem also tells us that

∑n
j=1 x j only becomes normal as n → ∞,

which is quite a lot bigger than 12. Errors are bound to be introduced by this method, but
without going into the details, these errors are much smaller than most people suspect from
such a small sample.
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(v) Box–Muller Method: This is the most widespread method for generating standard normal
random numbers. If x1 and x2 are two independent standard uniform random numbers, then
z1 and z2 are two independent standard normal random numbers, where

z1 =
√

−2 ln x1 sin 2πx2; z2 =
√

−2 ln x1 cos 2πx2

At first sight these look a little curious (how do trigonometric functions come into it?), but
the connection is easy to demonstrate. We start with the well-known relationship of functional
analysis, used for transforming variables: in two dimensions this is written

�(z1, z2) dz1 dz2 = �(x1, x2)

∣∣∣∣∂(x1, x2)

∂(z1, z2)

∣∣∣∣ dz1 dz2

Invert the two previous expressions for z1 and z2:

x1 = e− 1
2 (z2

1+z2
2); x2 = 1

2π
tan−1 z2

z1

and work out the Jacobian determinant

∣∣∣∣∂(x1, x2)

∂(z1, z2)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∂x1

∂z1

∂x1

∂z2

∂x2

∂z1

∂x2

∂z2

∣∣∣∣∣∣∣∣
= −

(
1√
2π

e− 1
2 z2

1

)(
1√
2π

e− 1
2 z2

2

)

Interpreting � as a probability density function and using

�(x1, x2) = 1 (0 < x1and x2 < 1)

= 0 (otherwise)

shows that z1 and z2 are independently, normally distributed.

(vi) Correlated Standard Normal Random Number: Given that Monte Carlo’s really strong suit is
multivariate options, it is not surprising that we are frequently called on to construct correlated
random numbers, which can be constructed from uncorrelated numbers as shown below.

Let z1, . . . , zn be a set of independent standard normal random numbers which can be
written in vector form as

Z =




z1
...

zn




We can generate correlated standard normal random numbers y from these using the transfor-
mation y = Az. Let us take a three-dimensional example for simplicity, and use the general
property

yy′ = Az(Az)′ = Azz′A′

where a prime signifies transpose. Take the expectation of every element in the last matrix
formula:

E〈yy′〉 = Σ =

1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


 = A E〈zz′〉 A′ = AA′
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Σ is known as the variance–covariance matrix of y. The simplest solution for A is obtained if
we write it in lower triangular form. This is called the Cholesky decomposition:

A =

a11 0 0

a12 a22 0
a13 a23 a33




It is a question of simple algebra to calculate the ai j in terms of the elements of the variance–
covariance matrix: the first few elements are a11 = 1; a12 = ρ12; a22 =

√
1 − ρ2

12. In the two-
dimensional case, we therefore have

y1 = z1; y2 = ρ12 z1 +
√

1 − ρ2
12 z2

which is the same result obtained elsewhere by rather different methods [Appendix A.1(vi)].
This decomposition is clearly easy to extend to higher dimensions.

10.4 PRACTICAL APPLICATIONS

(i) There is a very large literature on Monte Carlo techniques applied to option pricing, much of
it dedicated to techniques for improving on the results obtained by application of the basic
method described above. A newcomer to this field is warned to be careful: the field has a large
number of Enthusiasts selling their Ideas, and you can waste a lot of time on gushing articles
making claims which never seem to produce the same huge benefit when applied to one’s own
problem; even worse, some touted techniques can either make errors bigger when applied to
the “wrong problem” or can introduce biases which are hard to detect.

There are two basic approaches to Monte Carlo: you can use it as a once-off tool rather
than for repeat pricing. In this case, you are safer in achieving accuracy by just increasing the
number of simulations, rather than trying to stick on some hacker’s gimmicks picked up from
the trade press. Remember, Moore’s law is on your side: your machine is likely to run 20 times
faster than the one used by the guy who wrote the article on how to double the speed of your
Monte Carlo convergence.

The alternative approach is to use Monte Carlo for multiple pricings in a live commercial
situation. In this case, speed of convergence will be critically important. Usually, the best way
of achieving this is by means of low discrepancy sequences as described in the next section. If
the problem does not allow this approach (usually if the dimensions are greater than 20/30),
then there is no alternative to using random number Monte Carlo and finding whatever variance
reducing techniques are available; but this will be a serious research project going well beyond
the scope of this book.

(ii) Antithetic Variables (or variates or sampling): This is the most popular variance reduction
technique, giving improvements in most circumstances. It is also extremely easy to implement
and is benign, i.e. even if it does not do much good (see below), it does not introduce hidden
biases or other problems. We would be breaking a fundamental rule of the game since z1 and−z1

are not independent of each other. But we can do something closely related which is allowed:
switch our attention from f (zi ) to a new variable φ(zi ) = 1

2 ( f (zi ) + f (−zi )). The average of
these φ(zi ) for the N different values of zi is an unbiased estimate of the answer we need; and
in most cases we encounter, φ(zi ) has a much smaller variance than f (zi ). In simple, intuitive
terms, if f (zi ) is large, f (−zi ) will be small and vice versa.
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In slightly more formal terms, antithetic variables are more efficient than doubling the
number of simulations if

var
[

1
2 ( f (zi ) + f (−zi ))

]
< 1

2 var[ f (zi )]

Using the general relationship var[a + b] = var[a]+var[a] + 2 cov[a, b], the last condition
can be written

cov[ f (zi ), f (−zi )] < 0

This is certainly met by a European call, knock-out or Asian option; but it would not be true
for a straddle [see Section 2.5(v)], which increases in value as ST increases or decreases. An
indication of the effectiveness of this technique is given in Table 10.2 for the following options:

� European Call: S = 100; X = 110; r = 10%; q = 4%; T = 1 year; σ = 20%.
� Knock-out Call (weekly sampling): S = 100; X = 110; K = 150; r = 10%; q = 4%; T =

1 year; σ = 20%.
� Arithmetic Asian Call (weekly sampling): S = 100; X = 100; r = 9%; q = 0%; T =

1 year; σ = 50%.

Table 10.2 Effect of antithetic variables

250,000 simulations
500,000 simulations + antithetic variables

European Call 6.179 ± 0.016 ±0.014
Knock-out Call 4.035 ± 0.011 ±0.009
Asian Call 12.991 ± 0.030 ±0.024

(iii) Control Variates Applied to Asian Options: One of the most difficult commonly used options
to price is the arithmetic average option. In Chapter 17 it is shown that an arithmetic and a
geometric average option have values which are always close in size. Yet a geometric option
has an easy analytical pricing akin to the Black Scholes model, while an arithmetic option can
only be priced numerically.

This similarity in the two prices can be used to enhance the efficiency of Monte Carlo as
follows: rather than focusing on the individual simulation values for the arithmetic average
call, let us switch our attention to the variable φ(zi ) = fA(zi ) − fG(zi ); the suffixes A and G
indicate the arithmetic and geometric call options. Our best estimate for φ is the simulation
average, i.e. φ̂ = φ̄ or f̂A − f̂G = f̄A − f̄G. Our best estimate of the value of the fG is just the
analytical value, so we may write

f̂A = f̄A − f̄G + fG (analytical)

The standard error of this estimate can be obtained from

var[ f̂ A] = var[ f̄ A − f̄ G] = var[ f̄ A] + var[ f̄ G] − 2ρ

√
var[ f̄ A]var[ f̄ G]

This so-called control variate technique gives an improved result if var[ f̂ A] is less than var[ f̄ A],
which we get in a straightforward Monte Carlo run; or equivalently if ρ > 1

2 SEG/SEA. If the
standard errors (SE) of the geometric and arithmetic results are approximately the same, the
condition for the control variate technique to improve results becomes ρ > 1

2 ; a correlation with

134



10.5 QUASI-RANDOM NUMBERS

a coefficient of 1
2 is quite loose and is certainly far exceeded by an arithmetic and a geometric

Asian option. If the correlation coefficient approaches unity, we have SEA−G = SEA − SEG.
Using the same arithmetic Asian call option as in the last subsection, a simple Monte

Carlo run with 1 million shots gives a price of 12.994 ± 0.021. The analytical value of the
corresponding geometric call option is 11.764. Using this as the control variate gives a pricing
for the arithmetic call of 13.007 ± 0.011 with a mere 25,000 simulation run.

This enormous gain in efficiency is of course due to the very close correlation between arith-
metic and geometric prices. Unfortunately, there are no other situations which work remotely
as well.

(iv) Greeks: So far in this chapter we have referred to pricing options. Equally important for the
management of an options book is the calculation of a good estimate for the Greek parameters.
The obvious way of doing this is by finite differencing: for example, if f̄ (S0) is the discounted
payoff of an option when the stock price is S0, then a single simulation of the delta is written

�(S0) = f (S0 + δS0) − f (S0 − δS0)

2δS0

An unbiased estimate �̄(S0) of the delta is then equal to the average of the individual simu-
lation results �(S0). The critical thing to remember is that the same path (i.e. set of random
numbers) must be used to generate the f (S0 + δS0) as are used for the f (S0 − δS0); otherwise
convergence will be too slow to be of any use. Clearly, this method can be used to estimate
any of the Greek parameters.

10.5 QUASI-RANDOM NUMBERS

(i) Look up on a cloudless night and you see the sky randomly covered with stars: but are they
random? Poetic star-gazers over the ages have pointed out the fantastic designs they trace. Less
sensitive souls see the patterns less clearly but everyone is agreed that the random stars clump
together, leaving some parts of the sky emptier than others (deep comments from astrophysicists
or other religious groups are not helpful at this point, thank you).

And so it is with random numbers. If you see pairs of standard uniform random numbers
plotted on a plane with the numbers ranging from 0 to 1 on both axes, it is certain that you
could “improve” on the random distribution by rearranging some points. So why use random
numbers at all? When we did a simulation run with N shots to price a European call, we started
with N standard uniform random numbers. Why not start with N numbers equally spaced
between 0 and 1. From these we could generate N numbers which lie on the normal curve,
bunched together around the peak of the curve. Wouldn’t this give a more accurate answer
than a random simulation? The answer is of course a resounding “yes: it would be much more
efficient”.

The reason is that we have effectively gone back to performing a numerical integration of
a one-dimensional integral. Furthermore, we have introduced a refinement of the discussion
in Section 10.1(iii): having chosen the uniform numbers to be equally spaced, the resultant
normal numbers must be in positions such that they describe strips of equal area under the
standard normal curve. In other words, the numerical integration procedure which is equivalent
to this calculation effectively uses a trapezium rule with strips of equal area. The effect of this
is to make the strips thinner (and hence the integration procedure more accurate) in the area
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of highest probability. This was previously cited as one of the reasons for the high efficiency
of the Monte Carlo method.

If we try to extend this to higher dimensions we unfortunately fall under the “curse of
dimensionality” once again, e.g. a 10-dimensional grid with only 10 points on each axis gives
us 10 billion calculations to do. Furthermore, setting up a grid is not very flexible because of the
large jumps in numbers of calculations if we change the numbers of points on each axis: if we
are dealing with a 10-dimensional problem, the number of calculation points with two, three
or four nodes per axis are 210, 310 and 410, respectively, and i.e. 1000, 60,000 and 1,000,000.
What do we do if we want to run a number of simulations lying between these numbers?

We know that we cannot use equally spaced points along each axis for anything but very
low numbers of dimensions – maybe four at most. So let us ask a more modest question: can
we devise a procedure for packing an n-dimensional space with N points more efficiently than
with random numbers, so that the simulation results converge more quickly than N−1/2 as N
increases?

(ii) The answer to the last question is of course “yes”; these are the so-called low discrepancy
sequences or quasi-random numbers. There are several different schemas for manufacturing
these sequences known by the names of their inventors: Halton, Fauré, Sobol. The easiest
sequence to produce are the simple Halton numbers which we shall use for illustration.
Figure 10.3 compares 1000 points plotted in two dimensions for a random distribution and
for Halton numbers (bases 2 and 3). There is not much poetry in the Halton diagram but it is
obvious that the area is more uniformly covered with dots than the random diagram.

Random Numbers Halton Numbers 

Figure 10.3 1000 Pairs of numbers

The speed of convergence of these methods is approximately ∝ c(d)(ln N )d/N , where d is
the number of dimensions; C(d) is different for the different methods of producing the low
discrepancy sequences.

A lot of jargon and methodology is carried over from true Monte Carlo analysis, but it
should be remembered that these are fixed numbers. We have already seen that a computer
cannot produce random numbers; but the pseudo-random numbers which we use instead really
have the properties of random numbers, e.g. we can start taking our sample from anywhere
in a sequence. Quasi-random numbers on the other hand have a definite beginning and order
(although no end). By definition they are always the same.

(iii) Halton Sequence: Like standard uniform random numbers, these numbers have value 0 to 1.
Each one dimensional sequence of Halton numbers is manufactured from an integer base b

136



10.5 QUASI-RANDOM NUMBERS

which can be chosen arbitrarily; normally prime numbers are chosen. The numbers are the
following sequence:

[0],
1

b
,

2

b
, . . . ,

b − 1

b
;

1

b2
+
(

all numbers in
previous row

)
,

2

b2
+
(

all numbers in
previous row

)
, . . . ,

b − 1

b2
+
(

all numbers in
previous row

)
;

1

b3
+
(

all numbers in
previous row

)
,

2

b3
+
(

all numbers in
previous row

)
, . . . ,

b − 1

b3
+
(

all numbers in
previous row

)
;

...

The first zero, which is inserted in order to express the subsequent numbers simply, is not
part of the Halton sequence and is discarded once the sequence has been set up. We take the
example of b = 3, when the sequence becomes

[0],
1

3
,

2

3
;

1

9
+ 0,

1

9
+ 1

3
,

1

9
+ 2

3
;

2

9
+ 0,

2

9
+ 1

3
,

2

9
+ 2

3
;

1

27
+ 0,

1

27
+ 1

3
,

1

27
+ 2

3
;

1

27
+ 1

9
+ 0,

1

27
+ 1

9
+ 1

3
,

1

27
+ 1

9
+ 2

3
; etc.

Clearly, this is just a way of placing points along a line in an orderly way so that each new
point is placed as far away from existing points as possible. On the whole, it is better to use
low prime bases rather than high ones.

(iv) Alternative Representation of Halton Numbers: The last subsection explained how the interval
0 to 1 is progressively filled with Halton numbers after the base has been chosen. There is an
alternative way of describing this, which is less intuitively appealing but easier to code:

� Take the sequence of integers starting with 1 and write these to base b.
� Flip these base b integers over the decimal point as shown in Table 10.3.
� This flipped over fraction, when re-expressed to base 10 is a Halton number.

Table 10.3 Manufacture of Halton numbers to base 3

Flipped Integer10

Integer10 Integer3 Flipped Integer3 = Halton Number

1 13 0.13
2
3

2 23 0.23
2
3

3 103 0.013
1
9

4 113 0.113
1
9 + 1

3

5 123 0.213
1
9 + 1

3

6 203 0.023
2
9

(v) Higher Dimensional Halton Numbers: Consider a two-dimensional problem needing pairs of
“random numbers”. If these are true or pseudo-random numbers, we can just pair up random
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10 Monte Carlo

numbers as they come out of the random number generator; but with quasi-random numbers
we need to be much more careful. These are deterministic numbers which are built up logically,
so undesirable patterns can build up if they are used carelessly: at its most basic, if we take
pairs of numbers as they come out of two generators using the same base, all the points will
lie along a straight line in the X − Y plane, e.g. ( 1

3 , 1
3 ), ( 2

3 , 2
3 ), ( 1

9 , 1
9 ). The simplest procedure

is therefore to use a different prime number for the base of the Halton numbers used for each
dimension, e.g. for a three-dimensional sequence, we use the three Halton sequences H2, H3,
H5, taking the numbers H2(1), H3(1), H5(1) for the first point, and so on up to H2(n), H3(n),
H5(n) for the nth point. This simple procedure is adequate for a few dimensions but beyond
about six, convergence is not so good.

(vi) Fauré Sequence: A slightly more complex method than in the last subparagraph is due to Fauré,
and is also made from the Halton numbers; it leads to a sequence which is much more efficient.
Halton numbers to a single base are manipulated to obtain the coordinates of multidimensional
points, using the following procedure and example:

1. Suppose we wish to obtain a sequence of d-dimensional points; our example will take d = 3
2. Decide on a base r which is a prime number with r ≥ d. For our example we choose r = 3.
3. We saw above that the Halton numbers are based on ascending integers. Any integer n to

base r may be written

n = hmrm + · · · + h2r2 + h1r1 + h0r0

For example

2210 = 2 × 32 + 1 × 31 + 1 × 30 = 2113

The Halton number is now written

Hr (n) = h0r−1 + h1r−2 + h2r−3 + · · ·
In our example

H3(22) = 1

3
+ 1

9
+ 2

27
= 14

27

4. The Fauré sequences describe points in d dimensions, i.e. are d parallel streams of numbers.
The first stream of numbers is just the simple Halton sequence for n = 1, 2, 3, . . . . The
other streams of numbers are obtained by calculating coefficients analogous to the hi in the
last equation. We write the Fauré number from stream k as �k

r (n), and use the following
definitions:

�1
r (n) = Hr (n); a1

i = hi

The s Fauré numbers corresponding to the integer n are then

�1
r (n) = a1

0r−1 + a1
1r−2 + a1

2r−3 + · · · = Hr (n)

�2
r (n) = a2

0r−1 + a2
1r−2 + a2

2r−3 + · · ·
...

�d
r (n) = ad

0 r−1 + ad
1 r−2 + ad

2 r−3 + · · ·
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In our numerical example

�1
3(22) = 1 × 3−1 + 1 × 3−2 + 2 × 3−3 = 14

17

�2
3(22) = a2

0 × 3−1 + a2
1 × 3−2 + a2

2 × 3−3

�3
3(22) = a3

0 × 3−1 + a3
1 × 3−2 + a3

2 × 3−3

5. The task is now to find the various ak
j . Each row of ak

j are obtained from the row of ak−1
j

preceding it, using the same simple triangular transformation matrix as follows:

(
ak

0 ak
1 ak

2 · · · ) = (ak−1
0 ak−1

1 ak−1
2 · · · )




0C0 0 0 · · ·
1C0

1C1 0 · · ·
2C0

2C1
2C2 · · ·

...
...

...
. . .


mod r

where i C j = i!/j!(i − j)! and the modulus r operation is performed on each element after
matrix multiplication (mod r is the remainder after dividing by r). In our example, we have
for �2

3(22):

(
a2

0 a2
1 a2

2

) = (1 1 2)


1 0 0

1 1 0
1 2 1


mod 3 = (4 mod 3 5 mod 3 2 mod 3) = (1 2 2)

So that

�2
3(22) = 1 × 3−1 + 2 × 3−2 + 2 × 3−3 = 17

27

(vii) Normally Distributed Halton Numbers: Quasi-random numbers are not random; we have
seen that they are carefully constructed in groups of d, when a point in d-dimensional space is
specified. Not surprisingly, the “sum of 12” and Box–Muller methods of manufacturing normal
random numbers would just scramble their structue and produce meaningless numbers. Each
uniform Halton number therefore has to be converted to a standard normal Halton number by
using the inverse cumulative normal transformation described in Section 10.2(iii).

(viii) Correlation: This is handled using a Cholesky decomposition just as it would be for true
random numbers.

10.6 EXAMPLES

(i) Use of Low Discrepancy Sequences: In the last section we made the distinction between the
use of Monte Carlo for an occasional pricing and its routine use for calculating on-line prices
or regular revaluation of a book. The same remarks apply to quasi-random numbers. There is
no doubt that you need to be a lot more careful when setting up low discrepancy sequences. If
you are using simulation for once-off calculations, it might be easier just to let your random
number Monte Carlo simulations run for an extra half hour rather than risk the errors that
can be made in putting together a quasi-Monte Carlo run. The production of quasi-random
numbers and their conversion using an inverse cumulative normal routine takes longer than
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10 Monte Carlo

generating pseudo-random numbers. Furthermore, without wanting to open a large topic, the
reader is warned that periodicities in the calculations can emerge in unexpected places and
without warning, and yield completely erroneous results.

On the other hand, if you are building a model for repeat use, you should always use quasi-
Monte Carlo if possible. Two impressive examples follow in which a 10,000 run with Halton
numbers gives results comparable to a 1,000,000 run using random Monte Carlo; on a low-
powered laptop, the former takes a fraction of a second while the latter takes half an hour or
more. The reason for this speed is not only the smaller number of runs, but the fact that the
20,000 Halton numbers, preconverted to normal form, can be stored in an Excel spread sheet
and are instantly available for calculations.

The main drawback of this method is again a matter of dimensionality. There is no universal
cut-off and the numbers depend on the specifics of the problem, but the following is an
indication:

� The efficiency of quasi-Monte Carlo diminishes with the number of dimensions and it
is unsafe to go beyond 20/30 dimensions. The 52-dimension knock-out and Asian calls
examined in Section 10.4(ii) are beyond these techniques at present.

� The simple Halton numbers (used in the following examples) should not be used for more
than half a dozen dimensions. Any higher, you should use Fauré numbers or preferably Sobol
numbers. For an explanation of the latter together with useful code see Press et al. (1992)
and Jäckel (2002).

� Low discrepancy sequences are prone to suddenly displaying unexpected and spurious re-
sults, due to cyclical patterns in the numbers asserting themselves. Single answers should
therefore not be relied on, and the convergence towards the answer as the number of data
points is increased should be understood. This is not dissimilar to the approach with trees
described in Chapter 7. In any case, quasi-Monte Carlo methods do not prescribe an easy
method for assessing the error in a calculation, so looking at the convergence is really the
only way to have confidence in the result.

Two examples follow for which quasi-Monte Carlo methods are ideally suited. Both models
were written in an Excel spread sheet which contained the necessary simple Halton numbers,
from 1 to 20,000 in various bases. Once this is set up, the calculations are almost instantaneous.
The models were set up to display the pricing using the first n thousand Halton numbers, with n
ranging from 1 to 20; that way we can track the convergence of the result to some stable value.

It would have been nice to reanalyze the knock-out and Asian calls which we looked at
previously, but 52 dimensions is too high for reliable answers. Better suited alternatives are
therefore chosen.

(ii) European Call on the Spread Between Two Stock Prices: S1(0) = 100; S2(0) = 90; X = 10;
r = 10%; q1 = 4%; q2 = 2%; T = 1 year; σ1 = 20%; σ1 = 20%; correlation = 0.75%:

Payoff = max[0, S1(1 year) − S2(1 year) − X ]

A simple random Monte Carlo pricing using 1 million simulations gives a price of 6.337 ±
0.009 for this option.

The low discrepancy sequence was based on Halton numbers with bases 2 and 3; a graph of
the pricing vs. the number of points used is shown in Figure 10.4. Convergence is very rapid,
getting to within 0.2% of a 1 million shot Monte Carlo result with just under 10,000 points.
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Figure 10.4 Pricing spread option with Halton sequence

(iii) Knock-out Call with Monitoring Every 2 Months: S = 100; X = 110; K = 150; r = 10%;
q = 4%; T = 1 year; σ = 20%. This is similar to the knock-out option examined previously,
but with monitoring every 2 months rather than every week. The Monte Carlo pricing us-
ing 1

2 million simulations with antithetic variates is 4.373 ± 0.0005 (Figure 10.5). This is a
six-dimensional problem and for each dimension (or equivalently at each node) we use Halton
numbers based on the first six prime numbers. Again, satisfactory convergence is achieved in
just about 12,000 quasi-simulations.
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Figure 10.5 Pricing knock-out option with Halton sequence
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11

Simple Exotics

The purpose of this part of the book is to introduce the reader to the most important types
of equity derivatives and to illustrate the pricing techniques which have been introduced in
the last two parts. Exotic options can mostly be priced using classical statistical techniques,
although we will see in Part 4 of this book that some of the analysis can be simplified (or at least
rendered more elegant) using stochastic calculus.

There is no firm definition of an exotic option and we usually take it to mean anything that
is not a simple European or American put or call option. We start with a chapter on simple
extensions of the Black Scholes methodology, which should really be understood by anyone
involved with options, whether or not they have a specific interest in exotics.

11.1 FORWARD START OPTIONS

(i) Suppose we buy an option with maturity T which only starts running at time τ . If the strike
price is set now, pricing becomes fairly trivial: the price of a European option depends only on
the final stock price and the strike price so there is no difference whatsoever between “starting
now” and “starting at time τ”; with an American option we must take into account the fact
that we cannot exercise the option between now and time τ , but this is easily accommodated
within a tree or a finite difference scheme. But the type of options considered here are those
that are at-the-money or 20% out-of-the-money at some future starting date.

(ii) Homogeneous Functions: This is an important mathematical property of option prices which
we use freely in the following chapters. The concept is so intuitive that most people use it
instinctively without placing a name to it.

If the reader is already working within a derivatives environment, it is quite likely that
his option model has the initial stock price preset to 100; this yields option prices directly
as a percentage of the stock price. We know that the initial stock price will not be 100 but
we also know that things move proportionately: if an option is priced at 5.5 on our preset
model with S0 = 100 and strike price X = 120, we know immediately that the price of a
similar option with S0 = 40 and X = 48 would be 2.2. It is immediately apparent to most
people that the strike price has to move in line with the stock price for this reasoning to work,
just as it is apparent to most that we should not change the time to maturity or the interest
rate.

An equally obvious conclusion is reached concerning the number of shares on which an
option is written. Suppose we own a call option on one share and the company suddenly
declares a 2 for 1 stock split. We know that the share price would fall in half, but we
would be kept whole if our call option were replaced by two options of the same matu-
rity, each on one of the new shares, and with the strike price equal to half the original strike
price.



11 Simple Exotics

Let f (nS0, nX ) be the value of an option on n shares, where S0 is the stock price and X is
the strike. The homogeneity condition just described may be written

f (nS0, nX ) = S0 f

(
n, n

X

S0

)
= X f

(
n

S0

X
, n

)
= n f (S0, X ) = nS0 f

(
1,

X

S0

)
(11.1)

It should be pointed out that this property holds true for most options we encounter, although
sometimes with modification: for example, barrier options are homogeneous in spot price,
strike price and barrier value. However there are exceptions such as power options which are
described later in this chapter.

(iii) Forward Start with Fixed Number of Shares: Consider an option starting in some time τ in
the future, maturing in time T and with a strike price equal to a predetermined percentage α of
the starting stock price. Using the homogeneity property, the value of this option in time τ is

f (Sτ , αSτ , T − τ ) = Sτ f (1, α, T − τ )

The term f (1, α, T − τ ) is non-stochastic and may be calculated immediately. If we buy
f (1, α, T − τ ) units of stock today at a cost of S0 f (1, α, T − τ ), the value of this stock in
time τ will be Sτ f (1, α, T − τ ); but this is the same as the future value of the forward starting
option. Today’s value of the forward starting option must therefore be

S0 f (1, α, T − τ ) = f (S0, αS0, T − τ )

i.e. the value of the forward starting option is the same as if the option started running today, with
the time to maturity set equal to the length of time between the start and maturity (Rubinstein,
1991c).

A further refinement is needed if the stock pays a dividend. Remember that if we hold a
packet of stock from now to time τ , we will receive a dividend but if we hold an option, we
will not. The adjustment to the formula can be made by the usual substitution Sτ → Sτ e−qτ

for continuous dividends to give

fforward start = e−qτ f (S0, αS0, T − τ )

(iv) Forward Start with Fixed Value of Shares: The last subparagraph dealt with a forward starting
option on a fixed number of shares. But suppose we were asked to price a forward starting
option on $1000 of shares. The value of this option in time τ will be

f (nτ Sτ , αnτ Sτ , T − τ ) = nτ Sτ f (1, α, T − τ )

where nτ Sτ = $1000 in our example. Therefore, the value of this option in time τ is completely
determinate (non-stochastic); today’s value is simply obtained by present valuing this sum:

fforward start = e−rτ f (S0, αS0, T − τ )

(v) The contrasting results of the last two subsections are well illustrated in the foreign exchange
market:

� For an option to buy £1 for dollars, forward start means discounting back by the sterling
interest rate.

� For an option to buy sterling for $1, forward start means discounting back by the dollar
interest rate.

146



11.2 CHOOSERS

(vi) Cliquets (Ratchets): As the name implies, this type of option was first used widely in France.
It is designed for an investor who likes the basic idea of a call option but is concerned that
the stock price might spend most of its time above the strike price, only to plunge just before
maturity. In such a case, the cliquet would capture the effect of the early price rise. It is really a
series of forward starting options strung together. The option has a final maturity T (typically
1 year) and a number of re-set dates τ1, τ2, · · · (typically quarterly). The payoff and re-set
sequence is as follows:

� At τ1, the option pays max[0, Sτ1 − S0].
� At τ2, the option pays max[0, Sτ2 − Sτ1 ], etc.

Clearly, each of these is the payoff of an at-the-money forward starting call option. The fair
value is therefore given by

fcliquet = C(S0, S0, τ1) + e−qτ1 C(S0, S0, τ2 − τ1) + · · · + e−qτn−1 C(S0, S0, τn − τn−1)

Common variations on the structure have the effective strikes slightly out-of-the-money, or
have the payouts rolled into a single payment at final maturity.

11.2 CHOOSERS

(i) The 1990 Kuwait invasion led to a jump in the price of crude oil. Speculators were then faced
with a dilemma: if a withdrawal were negotiated, the oil price would fall back; but a declaration
of war by the US would lead to a further jump upwards. A ready-made strategy for this situation
is the straddle, consisting of both an at-the-money put and an at-the-money call. This has a
positive payoff whichever way the oil price moves; but it has the great drawback of being very
expensive.

(ii) The Simple Chooser: This option has a strike X and a final maturity T. The owner of the option
has until time τ to declare whether he wants the option to be either a call option or a put option.
The chooser is sold as an option which has the benefits of a straddle, but at a much lower cost.
Clearly, at the limit τ = T the option becomes a straddle while at the limit τ = 0 it becomes
a put or call option.

The pricing of this option is surprisingly easy (Rubinstein, 1991b): at time τ , the holder of
the option will choose put or call depending on which is more valuable. The payoff at time τ

can therefore be written

Payoffτ = max[P(Sτ , X, T − τ ), C(Sτ , X, T − τ )]

Using the put–call parity relationship of Section 2.2(i) gives

Payoffτ = max
[
C(Sτ , X, T − τ ) + X e−r (T −τ ) − Sτ e−q(T −τ ), C(Sτ , X, T − τ )

]
= C(Sτ , X, T − τ ) + e−q(T −τ ) max

[
X e−(r−q)(T −τ ) − Sτ , 0

]
Taking these two terms separately, the instrument which has a value C(Sτ , X, T − τ ) in time
τ when the stock price is Sτ is obviously a call option maturing in time T; its value today is
C(S0, X, T ).
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The form of the second term in the payoff is that of a put option maturing in time τ . Its value
today may be written e−q(T −τ ) P(S0, X e−(r−q)(T −τ ), τ ). Putting these together gives

fsimple chooser = C(S0, X, T ) + e−q(T −τ ) P
(
S0, X e−(r−q)(T −τ ), τ

)
(iii) Complex Chooser: The concept of the chooser can be very simply extended so that the put

and call options have different strike prices and maturities. Unfortunately, the mathematics of
the pricing does not extend so simply and we therefore defer this until Section 14.2.

11.3 SHOUT OPTIONS

(i) Like cliquets, these options are for investors who think that the underlying stock price might
peak at some time before maturity. The shout option is usually a call option, but with a
difference: at any time τ before maturity, the holder may “shout”. The effect of this is that he
is guaranteed a minimum payoff of Sτ − X , although he will get the payoff of the call option
if this is greater than the minimum.

(ii) Payoffs: By definition, the final payoff of the option is max[0, Sτ − X, ST − X ]. In practice,
Sτ − X is always greater than zero; if not, we would have Sτ < X which means that the holder
of the option had shouted at a time when the effect was to turn the shout option into a simple
European call option, for no economic benefit in exchange. The payoff at time T can therefore
be written

max[Sτ − X, ST − X ] = Sτ − X + max[0, ST − Sτ ]

At time τ if a shout is made, the value of this payoff is

e−r (T −τ )(Sτ − X ) + C(Sτ , Sτ , T − τ )

(iii) Shout Pricing: This option is easily priced using a binomial model as we would for any
American option (Thomas, 1993). The final nodes in the tree are max[0, ST − X ] as they
would be for a call option, i.e. if we get as far as the final nodes, it means that no shout took
place.

At each node before the final column, the holder has the choice of shouting or not shouting. To
decide which, compare the value obtained by discounting back the values of the two subsequent
nodes with the time τ payoff produced by shouting, i.e. e−r (T −τ )(Sτ − X ) + C(Sτ , Sτ , T − τ );
we enter whichever value is greater at that node.

In spirit this is the same as the binomial method for pricing American options which was
explained in Chapter 7; in that case we rolled back through the tree and at each node we selected
the greater of the payoff value or the calculated discounted average. The present procedure
calls for the Black Scholes value of a call option to be calculated at each node. However, with
the assumption of constant volatility, the Black Scholes formula only needs to be calculated
once for each time step. The homogeneity property described in Section 11.1(ii) says that the
price of an at-the-money option is proportional to the stock price, so that for an entire column
of nodes we only need to calculate the constant of proportionality C(1, 1, T − τ ) once.
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(iv) Put Shout: A precisely analogous put option with shout feature can be constructed. A gener-
alized payoff at time T can be written as

max[φ(Sτ − X ), φ(ST − X )] = φ(Sτ − X ) + max[0, φ(ST − Sτ )]

where {
φ = +1 for a call
φ = −1 for a put

At each node in the tree, a shouted value would be

e−r (T −τ ) φ(Sτ − X ) + Option(Sτ , Sτ , T − τ )

where the option is either a put or a call option.

(v) Strike Shout: The shout options described above locked in a minimum payout. Another version
of this type of option locks in a new strike price when the shout is made, and is even simpler
to price than the previous ones.

The payoff at time T for a calll option with strike shout is

max[0, ST − X, ST − Sτ ] = max[0, ST − Sτ ]

This is the same as in subsection (ii) above, but without the minimum payout. The rest of the
analysis is as before.

11.4 BINARY (DIGITAL) OPTIONS

(i) Recall the simple derivation of the Black Scholes formula which was given in Section 5.2. In
its simplest form, this may be written

C(S0, X, T ) =
∫ ∞

0
F(ST ) max[0, ST − X ] dST =

∫ ∞

X
F(ST )(ST − X ) dST

= S0 e−qT N[d1] − X e−rT N[d2]

where F(ST ) is the (lognormal) probability distribution of ST . The two terms in this equa-
tion will now be interpreted separately, rather than together as they were before (Reiner and
Rubinstein, 1991b).

Cashf

X

P

TS

Figure 11.1 Cash or nothing option

(ii) Cash or Nothing Option (Bet): In the term∫∞
X F(ST )X dST , the factor X appears in two un-

related roles: as a constant multiplicative factor in
the integrand and again as the lower limit of inte-
gration. The first role is trivial and we will drop
X from the integrand. Then e−rT

∫∞
X F(ST )dST =

e−rT N[d2] is the present value of the risk-neutral
probability that X < ST , and can be interpreted as
the arbitrage-free value of an option which pays out
$1 if ST is above X, and $0 otherwise (Figure 11.1).
This option is essentially a bet: “I will give you $1
if the stock price is over $100 in 6 months”. Its value is given by the second term in the Black
Scholes formula.
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Assetf

X
TS

Figure 11.2 Asset or nothing option

(iii) Asset or Nothing Option: By the same reasoning as
in the last section, the first term in the Black Scholes
formula is the price of an option which delivers one unit
of stock if the maturity price is above X and nothing
otherwise (Figure 11.2).

(iv) Gap Options: The last two options can be combined to
give the so-called gap options whose price is given by

fgap = S0 e−qT N[d1] − P e−rT N[d2]

= fasset − fcash

Pay Later
f

X TS

Figure 11.3 Pay later option

There are two special cases of this option which are of
interest: first, if P = X , we obviously have a European
call option; second, if the asset-or-nothing and the
cash-or-nothing components have the same value, then
the fair value of the gap option is zero, i.e. fgap =
fasset − fcash = 0. This composite option is known as
a pay-later option for obvious reasons: the initial pre-
mium for the option is zero and any payments either
way are made at maturity. The payoff is shown in
Figure 11.3.

(v) Greeks: The binary option formulas are basically the
Black Scholes formula pulled in half; it might therefore seem that there is little new to say about
these options. However, in some respects they display pathological behavior which teaches us
some important lessons.

Imagine a trader trying to dynamically hedge a short cash-or-nothing option (bet). Shortly
before maturity he would be trying to replicate the option shown in Figure 11.4. The trader
is sitting with ST = X−, i.e. just below the strike price. Gamma will be highish positive and
delta moderate. ST starts to rise slightly and gamma shoots up; but more alarmingly, delta goes
to astronomical levels. For a simple option, � never rises above 100%; but in this case � can
become 1000%. In fact, at the moment of expiry, � → ∞ as ST → X . It takes quite a brave
trader to buy 10 times the underlying stock as a hedge; if the price just zig-zags about ST = X ,
the trader could lose the entire option premium in transaction costs.

cashf

X

TS

+X-X

Figure 11.4 Hedging a bet

If ST moves to ST = X+, things become
calmer again. Delta returns to a low level, but the
sign of gamma has reversed. At the strike and
at the moment of expiry, an infinitesimal move
in ST across X would cause gamma to change
from +∞ to −∞; again, not comfortable.

A trader’s reaction might be just to sit tight
and do nothing as ST moves from X− to X+. But
then where would he get the payoff from, when
the bet is exercised against him? This intense
trading activity over a tiny range is what gener-
ates the income to make the payoff: hence the
occasional need to trade very large quantities of
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stock in the vicinity of the strike price. In practice, market practitioners tend to avoid bet
options in anything but small amounts.

11.5 POWER OPTIONS

(i) These may take an infinite variety of forms, but the two most common ones encountered in
the marketplace have payoffs given by

{max[0, ST − X ]}2 and max
[
0, S2

T − X2
]

In fact, we can write

{max[0, ST − X ]}2 =
{

0 ST < X
(ST − X )2 = S2

T − X2 − 2X (ST − X ) X < ST

= max
[
0, S2

T − X2
]− 2X max[0, ST − X ]

so the two options are simply connected by a call option.
These options are mostly the domain of leverage junkies and are mathematically rather

untidy. Unlike most options we deal with, they are not homogeneous in ST and X. A reflection
of this is that the size of the payment depends on the unit of currency used. As an exercise, the
reader should try to imagine how the payoff would have been handled in those countries that
adopted the Euro during the life of a power option.

(ii) We now look for a formula to price an option whose payoff is max[0, Sλ
T − X ]. Recall from

equation (3.7) that

ST = S0 e(r−q)T − 1
2 σ 2T +σ WT

where WT is a Browian motion. Then

Sλ
T = Sλ

0 eλ{(r−q)T − 1
2 σ 2T +σ WT }

= Sλ
0 e(r−Q)T − 1

2 ν2T +νWT

where

Q = λq − (λ − 1)
(
r + 1

2λσ 2
)
; ν = λσ

Bundlef

h

……

1

X
h

20 n

TS

Figure 11.5 Equally spaced calls

The form of Sλ
T is the same as the form of ST

so we can simply use our Black Scholes model,
substituting Q for q and v for volatility, while
using Sλ

0 where we would have used S0.

(iii) Bundles of Call Options: Suppose we buy a
package of call options as shown in Figure 11.5.
The package has the following properties:

• Each option on 2 × h shares.
• The strike price of the first option is X, and

the strike prices of each successive option is
h higher than the last.
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11 Simple Exotics

(The first point implies that h is a pure number while the second implies that it is a dollar
amount; this is just another reflection of the dimensional awkwardness of these options.)

Suppose that at the maturity of the bundle, the stock price is ST = X + nh which is above
X. If h is small, the payoff of this package is

(2h)(h + 2h + 3h + · · · + nh) = (2h)
n(n + 1)

2
h

= (nh)(nh + h) ≈ (ST − X )2

This is the payoff of the first square power option mentioned above. The power option can
be simulated by a bundle of options, with the approximation becoming exact as the spacing
between the strikes of the options shrinks to zero. Similarly, the second power option is
approximated by the same bundle plus a single call option with strike X, on 2X units of stock.

(iv) Soft Strike Options: There are high risks associated with hedging an option which is close to
maturity, when the stock price is close to the strike price. At this point, gamma blows up. In
fact, it is concern over the gamma near maturity that is often the decisive factor when deciding
how large an option position can be hedged.

Soft Strikef

X

TS

wX +wX -

Figure 11.6 Soft strike call

The gamma is the second differential of the
derivative price with respect to the stock price;
it is therefore constant for a square power option
near its maturity.

Suppose that a large call option (dotted line in
Figure 11.6) is requested by an investor, but the
bank is uncomfortable with the potential gamma
exposure close to maturity. The bank can instead
propose the payoff shown in the graph. For most
values of ST this has the same payoff as a straight-
forward call option; but for a distance ω on either
side of the strike price, the call payoff function is
replaced by

fsoft strike = 1

4ω
(ST − X + ω)2

This option is said to have a soft strike over the range X − ω to X + ω, where it has a constant
terminal gamma of 1

2ω.
Using the analysis of the last subparagraph, this soft strike option is equivalent to a bundle

of call options, with strike prices infinitesimally spaced between X − ω and X + ω.
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12

Two Asset Options

Before plunging into the details of specific options, we need to take a broad overview of the
principles underlying this chapter. In Appendix A.1 we set out the most important properties of
normally distributed variables. Two general results are of particular importance in this chapter
and it is worth repeating them here:

� The sum of two normally distributed variables is itself normally distributed; the mean of the
sum of the variables is equal to the sum of the means of the variables.

� The variance of the sum of two normally distributed variables is equal to the sum of the
individual variances if the two variances are independently distributed. If they are correlated,
the variance of the sum is given by

σ 2 = σ 2
1 + σ 2

2 + 2ρσ1σ2

where ρ is the correlation coefficient.

Consider two stochastic assets with prices at time t equal to S(1)
t and S(2)

t . Since ln S(1)
t and ln S(2)

t

are normally distributed, ln S(1)
t + ln S(2)

t = ln S(1)
t S(2)

t must also be normally distributed. This
means that variables such as S(1)

t S(2)
t and S(1)

t /S(2)
t are lognormally distributed and much of the

theory developed for a single stochastic asset can be used in analyzing the composite asset.
By contrast, S(1)

t + S(2)
t does not have a simple distribution. This composite asset is therefore

extremely difficult to analyze and we have no analytical results, even for apparently simple
options such as a call on the sum of two stock prices, with payoff max[0, S(1)

T + S(2)
T − X ].

12.1 EXCHANGE OPTIONS (MARGRABE)

(i) Consider an option on two assets whose initial prices are S(1)
0 and S(2)

0 , which has a payoff
max[0, S(1)

T − S(2)
T ]. This can be interpreted in three ways:

� An option to call a unit of asset 1 in exchange for a unit of asset 2.
� An option to put a unit of asset 2 in exchange for a unit of asset 1.
� A contract to receive a price differential if this is greater than zero.

In general this is referred to as an exchange or a spread or an outperformance option.
A very simple way of pricing this option is as follows (Margrabe, 1978): from the form of

the payoff, it is clear that the value of the option f (S(1)
0 , S(2)

0 ) is homogeneous in S(1)
0 and S(2)

0 .
This condition [see Section 11.1(ii)] can be written

f
(
S(1)

0 , S(2)
0

) = S(2)
0 f (Q0, 1) where Qt = S(1)

t

S(2)
t

We can interpret Q0 as the price of asset S(1) denominated in units of S(2). f (Q0, 1) is then just
a call option with a strike price of unity. Let us make the arguments more concrete by taking



12 Two Asset Options

a specific example where S(1)
0 is today’s $ price of a barrel of oil and S(2)

0 is today’s $ price of
an ounce of gold. The quantity Q0 is then today’s oil price expressed as ounces of gold per
barrel. f (Q0, 1) is the value (expressed in ounces of gold) of a call option to buy a barrel of
oil for 1 ounce of gold (probably not worth a lot at present rates!). In order to price this option
we need to first make a short detour and re-examine some fundamental principles.

(ii) Two concepts underlie the notion of risk neutrality: first, which everybody focuses on, is the
no-arbitrage principle. The second is so self-evident that it is easy to overlook: if we borrow or
deposit cash, then we pay or receive interest. Taking the simplest case of a forward contract,
no-arbitrage tells us that if we buy an asset for S0 and sell it forward for a price F0T , then the
return on the trade must equal the cost of borrowing the cash to buy the asset: F0T /S0 = erT .
Of course, if we were able to borrow money for zero interest rate, then we would simply put
r = 0 in all our option formulas.

In our current example, prices are denominated in a different form of money: not cash, but
ounces of gold. Gold is not like cash: there is no gold-bank where you can deposit 3 ounces
of gold and have it grow to 4 ounces a few years later. People hold gold because they expect
it to go up in price, not because they can earn interest from it. If you borrow gold, there is no
gold-interest charged – merely some handling charge, similar in nature to a stock-borrowing
cost. Therefore, if gold is used to denominate the price of a commodity and its derivative, we
must set the interest rate equal to zero in our formulas.

Two further points should be made: first, we have not abandoned risk neutrality. We under-
stand that the underlying growth rate in the price of oil (in barrels per gold ounce) is some
unknown quantity whose value we do not need to know. We solve our option problem in the
usual risk-neutral way, by setting this growth rate equal to the interest rate and present-valuing
the option using the interest rate: it just happens that when the money is not cash, the interest
rate equals zero.

The second point is that the reader should take care not to confuse the forgoing with the role
of dividends. Oil and gold dividends do not make much sense, but these commodities do incur
storage charges which as we saw in Section 5.5(v) play a role analogous to dividends. If S(1)

and S(2) were company stocks, the usual substitutions S(1)
0 → S(1)

0 e−q1T and S(2)
0 → S(2)

0 e−q2T

can be used to account for continuous dividends.

(iii) Margrabe’s Formula: An expression for f (Q0, 1) can immediately be written down using the
Black Scholes formula for a call option. In the standard notation of equation (5.1), with X = 1
and setting r → 0:

f (Q0, 1) = {Q0 N[d1] − N[d2]}
One final piece of information is needed: a value for σQ , the volatility of the composite asset
Qt = S(1)

t /S(2)
t S(2)

t . An expression for this is derived in Appendix A.1(xi). Generalizing to
allow for dividend-paying assets, Margrabe’s formula can now be written

fM arg rabe
(
S(1)

0 , S(2)
0

) = S(1)
0 e−q1T N[d1] − S(2)

0 e−q2T N[d2] (12.1)

d1 = ln Q0 + 1
2σ 2

Q T

σQ

√
T

; d2 = d1 − σQ

√
T ; σ 2

Q = σ 2
1 + σ 2

2 − 2ρ12σ1σ2

(iv) Applying the basic risk-free hedging portfolio arguments of Section 4.2, we would expect to
replicate an option on two assets by borrowing cash B(S(1)

t , S(2)
t , t) and investing this in �

(1)
t
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and �
(2)
t units of each stock, i.e.

f
(
S(1)

t , S(2)
t

) = �
(1)
t S(1)

t + �
(2)
t S(2)

t − B
(
S(1)

t , S(2)
t , t

)
; �

(i)
t = ∂ ft

∂S(i)
t

Euler’s theorem [see Appendix A.12(i)] states that if f (S(1)
t , S(2)

t ) is homogeneous, then we
must have

f
(
S(1)

t , S(2)
t

) = S(1)
t

∂ ft

∂S(1)
t

+ S(2)
t

∂ ft

∂S(2)
t

= S(1)
t �

(1)
t + S(2)

t �
(2)
t

The last two equations taken together mean that

B
(
S(1)

t , S(2)
t , t

) ≡ 0 always

We never need to borrow cash, which is of course why r does not appear in Margrabe’s formula:
we merely borrow the right amount of one stock and exchange it at the current rate for the
other stock; we are then automatically hedged for small movements in the price of either
stock.

(v) American Options: The homogeneity arguments that led to the adoption of a modified Black
Scholes model apply as much to an American option as to European options. f (Q0, 1) can
therefore be evaluated using one of the numerical procedures for American options, setting
r → 0.

12.2 MAXIMUM OF TWO ASSETS

(i) Consider an option whose payoff at time T is max[S(1)
T , S(2)

T ]. The value of this option today
can be written

fmax
(
S(1)

0 , S(2)
0

) = PV
[
E
[
S(1)

T : S(2)
T < S(1)

T

]+ E
[
S(2)

T : S(1)
T < S(2)

T

]]
(12.2)

= f (1 max) + f (2 max)

From the symmetry of the terms, we only need to find an expression for one of these in order
to write down the other (Stulz, 1982). Taking the second term and using the fact that the option
price must be homogeneous in S(1)

0 and S(2)
0 :

f (2 max) = S(2)
0 PV[E[1 | QT < 1]] = S(2)

0 PV[P[QT < 1]]

(ii) P[QT < 1] is the probability that the price of oil is less than 1 ounce of gold per barrel. A quick
glance back to Section 5.2 will show that this is the first term (the coefficient of the strike X)
in the Black Scholes model for a put option. We can therefore lift the formula for this directly
from our previous work, remembering that the following points apply in this case:

� The volatility of Qt is given by σ 2
Q = σ 2

1 + σ 2
2 − 2ρ12σ1σ2, where σ1 and σ2 are the $ price

volatilities of oil and gold; ρ12 (or ρ) is the correlation between them [see Appendix A.1(xi)
and (xii)].

� The interest rate in any formula we use is set equal to zero [see Section 12.1(ii) above].

(iii) The two terms in the expression for fmax(S(1)
0 , S(2)

0 ) in equation (12.2) are completely sym-
metrical and may both be obtained using the first term of the Black Scholes formula for a put
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option, which is given explicitly in Section 5.2. With a minimal amount of algebra, we get

fmax
(
S(1)

0 , S(2)
0

) = S(1)
0 N[d1/2] + S(2)

0 N [d2/1]

di/j = − ln S(i)
0

/
S( j)

0 + 1
2σ 2

Q T

σQ

√
T

; d1/2 + d2/1 = σQ

√
T

If the assets pay continuous dividends, we put S(i)
0 → S(i)

0 e−qi T; i = 1, 2.

(iv) Margrabe Again: This last formula can be used to re-derive Margrabe’s result. Consider the
following identity for the payoff:

max
[
0, S(1)

T − S(2)
T

]= max
[
S(1)

T , S(2)
T

]− S(2)
T

and find the present value of its expected value:

fM arg rabe
(
S(1)

0 , S(2)
0

) = fmax
(
S(1)

0 , S(2)
0

)− PV
[
E
[
S(2)

T

]]
This formula must be homogeneous in S(2)

0 and S(1)
0 . The first term on the right-hand side was

evaluated in the last subsection. The second term is simply the forward rate, but remember that
we are working in units which imply a zero interest rate [see Section 12.1(iii)]. The last term
can therefore simply be written S(2)

0 . Using the properties of the cumulative normal distribution
given in Appendix A.1 then gives

fM arg rabe
(
S(1)

0 , S(2)
0

) = S(1)
0 N[d1/2] + S(2)

0 N[d2/1] − S(2)
0

= S(1)
0 N[d1/2] − S(2)

0 {1 − N[d2/1]}
= S(1)

0 N [d1/2] − S(2)
0 N[d1/2 − σQ

√
T ]

12.3 MAXIMUM OF THREE ASSETS

(i) The method of the last section can be extended to three assets. fmax(S(1)
0 , S(2)

0 , S(3)
0 ) is today’s

value of an option whose payoff at time T is max[S(1)
T , S(2)

T , S(3)
T ]. The value of this option may

be written

fmax
(
S(1)

0 , S(2)
0 , S(3)

0

) = f (1 max) + f (2 max) + f (3 max)

= PV
[
E
[
S(1)

T : S(2)
T < S(1)

T ; S(3)
T < S(1)

T

]+ E
[
S(2)

T : S(1)
T < S(2)

T ; S(3)
T < S(2)

T

]
+ E
[
S(3)

T : S(2)
T < S(3)

T ; S(1)
T < S(3)

T

]]
This additive pattern reflects a well-known property of probabilities: if three events are mutually
exclusive, the probability of all three happening is equal to the sum of the probabilities of any
single one happening. As in the two asset case, the option must be homogeneous in S(1)

0 , S(2)
0

and S(3)
0 , so that the first term can be written

f (1 max) = S(1)
0 PV

[
P
[
Q2/1

T < 1; Q3/1
T < 1

]]
where Qi/j

t = S(i)
t /S( j)

t . As in the last two sections, all quantities on the right-hand side (except
S(1)

0 ) are measured in units of commodity S(1). We consequently put r → 0 when we perform
our risk-neutral calculations, as explained in Section 12.1(ii). The three terms in the equation
for fmax are completely symmetrical so only one of them needs to be evaluated.
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(ii) Setting r → 0, the present value discount factor becomes unity, and we see from Appendix A.1
that

zi/j
t = ln Qi/j

t

/
Qi/j

0 + 1
2σ 2

i/j t

σi/j
√

t

is a standard normal variate. Effecting a change of variables in the manner of equations (A1.7),
and using the bivariate normal definitions of equation (A1.12) gives

P
〈
Q2/1

T < 1; Q3/1
T < 1

〉 = ∫ 1

0

∫ 1

0
Fjo int

(
Q2/1

T ,Q3/1
T

)
dQ2/1

T dQ3/1
T∫ d2/1

−∞

∫ d3/1

−∞
n2
(
z2/1

T , z3/1
T ; ρ2/1,3/1

)
dz2/1

T dz3/1
T = N2[d2/1, d3/1; ρ2/1,3/1]

di/j = − ln Qi/j
0 + 1

2σ 2
i/j T

σi/j

√
T

= − ln Si
0

/
S j

0 + 1
2σ 2

i/j T

σi/j

√
T

; σ 2
i/k = σ 2

i + σ 2
k − ρi kσiσk

ρi/k, j/k = 1

σi/kσ j/k

{
σiσ jρi j − σiσkρik − σ jσkρ jk + σ 2

k

}
The last expression is demonstrated in equations (A1.24). Taking all three terms, we have by
symmetry

fmax
(
S(1)

0 , S(2)
0 , S(3)

0

) = S(1)
0 N2[d2/1, d3/1; ρ2/1,3/1]

+ S(2)
0 N2[d1/2, d3/2; ρ1/2,3/2] + S(3)

0 N2[d1/3, d2/3; ρ1/3,2/3]
(12.3)

As usual, continuous dividends can be accommodated by substituting S(i)
0 → S(i)

0 e−qi T for
each asset. An important specific case is an option for the maximum of two stochastic assets
or cash. We use equation (12.3) but set

S(3)
0 e−q3T → X e−rT ; σX = 0

to give

fmax
(
S(1)

0 , S(2)
0 , X

) = S(1)
0 N2[d2/1, dX/1; ρ2/1,X/1]

+ S(2)
0 N2[d1/2, dX/2; ρ1/2,X/2] + X e−rT N2[d1/X , d2/X ; ρ1/X,2/X ]

(12.4)

where the results of equations (A1.24) give σi/X = σX/ i = σi and

ρ1/X,2/X = ρ2/X,1/X = ρ12; ρX/2,1/2 = σ2 − σ1ρ12

σ1/2
; ρX/1,2/1 = σ1 − σ2ρ12

σ2/1

The adaptations to be made to the di/j are self-evident.
The techniques of this and the last section can be extended to larger numbers of assets

(Johnson, 1987); the formula for fmax will then involve multivariate normal functions of higher
order. In practice, correlations between assets tend to be highly unstable – more so than for
example volatility. Any derivative which is a function of a correlation therefore needs to
be treated with caution. But a derivative whose price is a complicated function of several
correlation coefficients probably has little commercial future.
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12.4 RAINBOW OPTIONS

These are call or put options on the maximum or minimum of two stochastic assets. Their
pricing is obtained directly from equation (12.4) (see also Rubinstein, 1991a).

(i) Call on the Maximum: This is by far the most commonly encountered rainbow option, and
has payoff

max
[
0, max

[
S(1)

T , S(2)
T

]− X
] = max

[
S(1)

T , S(2)
T , X

]− X

This immediately leads us to the formula

C(max) = fmax
(
S(1)

0 , S(2)
0 , X

)− X e−rT

(ii) Put on the Maximum: Regarding max[S(1)
T , S(2)

T ] as an asset in its own right, put call parity
gives

Put
(
max

[
S(1)

T , S(2)
T

])+ max
[
S(1)

T , S(2)
T

] = Call
(
max

[
S(1)

T , S(2)
T

])+ X e−rT

which leads directly to the formula

P(max) = fmax
(
S(1)

0 , S(2)
0 , X

)− fmax
(
S(1)

0 , S(2)
0

)
(iii) Call and Put on the Minimum: Suppose you have calls on two different assets, but someone

else has a call on you for the larger of the two assets. What are you left with? Simply a call on
the smaller of the two assets.

In the notation of this chapter, this is written

C(min) = C
(
S(1)

0

)+ C
(
S(1)

0

)− C(max)

P(min) = P
(
S(1)

0

)+ P
(
S(1)

0

)− P(max)

12.5 BLACK SCHOLES EQUATION FOR TWO ASSETS

An extension of the Black Scholes differential equation can be derived, which describes an
option on two assets. The steps in the derivation follow those of Section 4.2 precisely, and the
reader is advised to return to that section in order to follow the amendments below

(i) As in the one asset case, we start with the assumption that a portfolio can be constructed,
consisting of the derivative and the underlying stocks, in such quantities that the change in
value of the portfolio over a small time interval δt is independent of the stock price movements.
Otherwise expressed, we can hedge this option with the underlying stocks. The value of the
portfolio is written

ft − S(1)
t �

(1)
t − S(2)

t �
(2)
t

where the sign conventions of Chapter 4 are used (negative means a short position). In the
small time interval δt , the value of this portfolio moves by

δ ft − δS(1)
t �

(1)
t − δS(2)

t �
(2)
t − S(1)

t �
(1)
t q1δt − S(2)

t �
(2)
t q2δt

Arbitrage arguments tell us that if the portfolio value movement does not depend on the stock
price movement, then the rate of return due to this movement (plus any other predictable cash
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flows) must equal the risk-free return:

δ ft − δS(1)
t �

(1)
t − δS(2)

t �
(2)
t − S(1)

t �
(1)
t q1δt − S(2)

t �
(2)
t q2δt

ft − S(1)
t �

(1)
t − S(2)

t �
(2)
t

= rδt (12.5)

(ii) In order to obtain the generalized Black Scholes equation, we now need to substitute for δS(1)
t ,

δS(2)
t and δ ft in the last equation.
The two stock prices are assumed to follow the following Wiener processes:

δS(1)
t = S(1)

t (µ1 − q1)δt + S(1)
t σ1δW (1)

t

δS(2)
t = S(2)

t (µ2 − q2)δt + S(2)
t σ2δW (2)

t

which immediately gives us two of the terms to substitute. The third term is obtained from
Ito’s lemma which needs to be adapted slightly.

(iii) Ito’s Lemma for Two Assets: As set out in Section 3.4, Ito’s lemma is based on two elements:

1. The observation that (δWt )2 → δt as δt → 0. We use this relationship again, but there is
an additional relationship, based on precisely the same reasoning, which states that

δW (1)
t δW (2)

t → ρ12δt as δt → 0

where ρ12 is the correlation between the two Brownian motions.
2. Taylor’s expansion for two assets, making these last substitutions and rejecting all terms of

order greater than O[δt] becomes

δ ft =
{

∂ ft

∂t
+ (µ1 − q1)S(1)

t
∂ ft

∂S(1)
t

+ (µ2 − q2)S(2)
t

∂ ft

∂S(2)
t

+ 1

2
σ 2

1

(
S(1)

t

)2 ∂2 ft

∂
(
S(1)

t

)2 + ρ12σ1σ2S(1)
t S(2)

t
∂2 ft

∂S(1)
t S(2)

t

+ 1

2
σ 2

2

(
S(2)

t

)2 ∂2 ft

∂
(
S(2)

t

)2
}
δt + S(1)

t σ1
∂ ft

∂S(1)
t

δW (1)
t + S(2)

t σ2
∂ ft

∂S(2)
t

δW (2)
t

(iv) Having made the necessary substitutions back into equation (12.5), we set the coefficients of
δW (1)

t and δW (2)
t equal to zero, reflecting the fact that the portfolio is perfectly hedged, to give

0 = ∂ ft

∂t
+ (r − q1)S(1)

t
∂ ft

∂S(1)
t

+ (r − q2)S(2)
t

∂ ft

∂S(2)
t

− r ft

+ 1

2

{
σ 2

1

(
S(1)

t

)2 ∂2 ft

∂
(
S(1)

t

)2 + σ 2
2

(
S(2)

t

)2 ∂2 ft

∂
(
S(2)

t

)2 + 2ρ12σ1σ2S(1)
t S(2)

t
∂2 ft

∂S(1)
t S(2)

t

}
(12.6)

This can be written in more familiar form by making the substitution ∂/∂t = −∂/∂T where T
is the time to maturity of an option [see Section 1.1(v)], and setting t = 0:

∂ f0

∂T
= (r − q1)S(1)

0

∂ f0

∂S(1)
0

+ (r − q2)S(2)
0

∂ f0

∂S(2)
0

− r f0

+ 1

2

{
σ 2

1

(
S(1)

0

)2 ∂2 f0

∂
(
S(1)

0

)2 + σ 2
2

(
S(2)

0

)2 ∂2 f0

∂S(2)2

0

+ 2ρ12σ1σ2S(1)
0 S(2)

0

∂2 f0

∂S(1)
0 S(2)

0

}
(12.7)
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12 Two Asset Options

12.6 BINOMIAL MODEL FOR TWO ASSET OPTIONS

(i) An extension of the now familiar binomial tree to three dimensions is shown in Figure 12.1.
For the sake of simplicity, we use the space variables xt = ln S(1)

t /S(1)
0 and yt = ln S(2)

t /S(2)
0 ,

rather than working directly with stock prices. This means that the step sizes (up/down and
left/right) are of constant sizes, rather than proportional to the stock values; the first node in
the tree has value zero. A tree of this type is described by the basic arithmetic random walk
in Appendix A.2. Equation (3.5) shows that if the risk-neutral drift of S(1)

t is r − q1, then the
drift of xt is r − q1 − 1

2σ 2
1 = mx , and similarly for yt .

tx

t

ty
Figure 12.1 Binomial tree for two assets

(ii) Uncorrelated Assets: Consider the first cell in this tree. Figure 12.2 shows this cell looking
at the pyramid from the apex. In the middle of the rectangle we have the starting node with
x0, y0 = 0. From this point we move a time step of length δt and x0 and y0 move to one of the
four combinations whose values are given at the corners of the rectangle. In this simple case,
xδt can take two values: xu and xd ; similarly, yδt takes values yr and yl . This means that the
movement in asset 2 is the same whether asset 1 moves up or down, i.e. the two asset prices
are uncorrelated.

0 0x , y

u lx , y

1
4p =1

4p =

1
4p = 1

4p =

x , y

d       rx , yd lx , y

0 0x , y

u        r

Figure 12.2 Single binomial cell: uncorrelated

It is shown in Appendix A.2 and in Chapter 7
that with a binomial model for a single un-
derlying asset, we have discretion in choosing
nodal values and the probabilities of up- and
down-jumps. This is also the case with a
three-dimensional tree, and we will choose
the transition probability to each corner to
be 1

4 (cf. the Cox–Ross–Rubinstein discretiza-
tion of the simple binomial tree with p = 1

2 ).
Our task now is to find each of the nodal
values corresponding to these probabilities
(Rubinstein, 1994).
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12.6 BINOMIAL MODEL FOR TWO ASSET OPTIONS

Using the approach of Section 7.1(iv), the Wiener processes for xt and yt are written

δxt = mxδt + σx

√
δt z1

δyt = myδt + σy

√
δt z2

where z1 and z2 are uncorrelated standard normal variates. Matching local drifts and volatilities
to the tree, and using equation (A2.5) of the Appendix means that we can write

E[δxt ] = mxδt = 1
2 (xu + xd )

var[δxt ] = σ 2
x δt = 1

4

(
x2

u + x2
d

)− E2[δxt ] = 1
4 (xu − xd )2

which solves to

xu = mxδt + σx

√
δt ; xd = mxδt − σx

√
δt

Similarly

yr = myδt + σy

√
δt ; yl = myδt − σy

√
δt

0 0x , y

ux

1
4p =1

4p =

1
4p = 1

4p =

u ax , y

d bx , ydx

0       0
x , y

d, y

, y g

Figure 12.3 Single binomial cell: correlated

(iii) Correlated Assets: It is much more difficult
to find the nodal values in this case since the
value of yδt will depend on the value of xδt .
In graphical terms, the grid becomes squashed
so that each cell when viewed from the apex
turns into the parallelogram of Figure 12.3.
As before, we exercise the discretion we are
allowed, first by choosing the transition prob-
abilities to each corner to be 1

4 , and second
by only allowing xδt to have two values: xu

and xd . This time, yδt takes different values
at each corner.

The Wiener processes can be written

δxt = mxδt + σx

√
δt z1

δyt = myδt + σy

√
δt z2 = myδt + σy

√
δt{ρz1 +

√
1 − ρ2z3}

where z1 and z3 are independently distributed, standard normal variates [see Appendix A.1(vi)].
A heuristic argument might be made that in the first of these two processes, xu and xd

are obtained by putting z1 → 1 and z1 → −1 respectively. Similarly, putting z3 equal to ±1
corresponding to each of the values for z1 gives

xu = mxδt + σx

√
δt ; xd = mxδt − σx

√
δt

and

δyα = myδt + σy

√
δt{ρ +

√
1 − ρ2}

δyβ = myδt − σy

√
δt{ρ −

√
1 − ρ2}

δyγ = myδt − σy

√
δt{ρ +

√
1 − ρ2}

δyδ = myδt + σy

√
δt{ρ −

√
1 − ρ2}
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12 Two Asset Options

So much for the flaky argument: a proper confirmation that these are indeed the correct ex-
pressions is obtained by substituting them in the following defining equations:

E〈δyt 〉 = myδt var〈δyt 〉 = σ 2
y δt cov〈δxtδyt 〉 = ρσxσyδt

(iv) Payoff values of the option can be calculated for each final node since each of these contains
a value for xT and yT . Discount these back through the tree in the normal way, remembering
that the values at four nodes are needed for each step back (rather than two in the single asset
tree); probabilities are all set at p = 1

4 . For American options, derivative values at each node
are replaced by exercise value if necessary.

(v) Alternatives to Trees: It seems that we can extend this tree to higher dimensions to calculate
options on three or more assets, but this is not really practical for three reasons:

� Correlations in finance are extremely unstable, except for a very special case discussed in
Chapter 14. Calculations involving correlation between the prices of two stocks are useful, but
must be treated with extreme caution. Three-way correlation just compounds the instability
of results to the point where they have little practical use.

� The mental agility needed to analyze N -dimensional trees is discouraging.
� There are deep theoretical reasons why the efficiency of a tree drops off sharply with an

increasing number of dimensions: see Section 10.1(iii).

An example is given in Chapter 10 of the pricing of a two asset spread option using quasi-Monte
Carlo. This method is very quick and accurate, and can readily be extended to several assets.
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13

Currency Translated Options

13.1 INTRODUCTION

(i) These options do not require much new theory, yet newcomers tend to find them fairly tricky.
It is therefore best to make the analysis as concrete as possible. Consider an international
investment bank with offices in New York and Frankfurt. An American customer approaches
the bank, looking for a call option on the stock of a German company which is quoted in euros.
There are two issues to be decided: first, should the New York or the Frankfurt office handle
the business, i.e. is the option better regarded as a euro option or as a dollar option? Second,
how is it priced?

We will see that some options can be regarded as either € or $ options, although the analysis
is different depending on the approach. But one thing is certain: if there are two approaches, they
must give the same answer – apart perhaps from translations at the prevailing spot exchange
rate, which have no economic consequence. It therefore makes sense to price the option in
whichever framework is simpler (Reiner, 1992).

The following definitions and notation are used:

“Domestic Currency”: US$ “Foreign Currency”: €

φt: Value of €1 in $ (i.e. $ price of the €); $ price = φt × € price

ψt: Value of $1 in € (i.e. € price of the $); € price = ψt × $ price

ψt = φ−1
t

St: € price of a German stock; B€

t : € value of a € zero coupon bond

Pt = B€

t φt: $ value of a € zero coupon bond; Qt = St φt: $ value of a € stock

€ X = € strike price; $K = $ strike price

r$, r€ and q = interest rates and dividends

(ii) Foreign Currency Strike; Floating Exchange Rate (Flexo): The simplest case is when the
American customer wants his call option on the € stock to have a € strike price. He pays for the
option in $ at the spot rate at the beginning and has the payoff translated into $ at the prevailing
rate at maturity. Clearly, this is one for the Frankfurt office, as the option is merely a € option
on a German stock, with a € strike price. It is no different from the options routinely sold to
the bank’s German customers, except there happens to be a spot foreign exchange transaction
at the beginning and at the end; it scarcely merits a name of its own.

13.2 DOMESTIC CURRENCY STRIKE (COMPO)

Suppose the customer has decided he wants the strike price to be fixed in $. The payoff would
have the form max[0, ST − $50], where ST is denominated in €. $ and € denomination is
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mixed up in a non-trivial way so it is not clear whether we should regard this as a $ or a
€ option; nor is it apparent whether the transaction is better handled in Frankfurt or New York.
We will examine it from both viewpoints.

(i) A € View: The Frankfurt office of our bank sees an option whose payoff is max[0, € ST −
€ KψT ]. This is an option to exchange one € stochastic asset (K times the € price of a dollar)
for another (the € stock price); this is just Margrabe’s payoff. In Section 12.1 it was seen that
the value of this option is

€ fcompo = €{S0 e−qT
N[d1] − Kψ0 er$T N[d2]} (13.1)

d1 = ln S0 e−qT
/ψ0 e−r$T + 1

2σ 2
S/ψ T

σS/ψ

√
T

d2 = d1 − σS/ψ

√
T ; σ 2

S/ψ = σ 2
S + σ 2

ψ − 2ρSψ σSσψ

Note that since ψt = φ−1
t we may write σ 2

ψ = σ 2
φ ; ρSψ = −ρSφ .

From the analysis of Section 12.1(iv), it is apparent that the hedge for this option is to short
e−qT

N[d1] shares of stock; convert enough of the € proceeds of this short position to buy
$K e−r$ T N [d2] and deposit these dollars to yield r$; no € cash is borrowed or deposited.

(ii) A US$ View: While Frankfurt is doing these calculations, the rival team in New York takes a
different view: they see a stock price whose terminal value in US$ is QT = ST φT . The payoff
of this option is therefore written US$ max[0, $QT − $K ]. In fact, the New York office claims
that Frankfurt does not need to get involved at all, since the stock is simultaneously quoted
on the Frankfurt and New York exchanges. This is no different from any other stock quoted
in New York and the fact that the ultimate underlying company is German is irrelevant; the
option is therefore no different from any domestic US call option.

The price of this “purely American” call option is given by the Black Scholes formula of
equation (5.1):

$ fcompo = $
{

Q0 e−qT
N[d1] − K e−r$T N[d2]

}
(13.2)

d1 = ln Q0 e−qT /K e−r$T + 1
2 σ 2

Q T

σQ

√
T

; d2 = d1 − σQ ; Q0 = S0φ0 = S0/ψ0

In order to price this we use (amongst other parameters) the dividend yield and the volatility:

� Using a proportional dividend yield, the stock is regarded as throwing off a continuous
dividend qδt in any infinitesimal period δt . Clearly, if everything is converted from € to
US$ by a variable exchange rate, the proportional dividend yield remains unchanged as we
move currency.

� The historical volatility of the stock price quoted in New York may be obtained from an
information service such as Bloomberg; but if this is not available, a value can be calculated
from the volatilities of the stock price quoted in Frankfurt and the exchange rate volatility.
The relationship is demonstrated in Appendix A.1(xi):

σ 2
Q = σ 2

Sφ = σ 2
S + σ 2

φ + 2ρSφσSσφ
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Substituting these results in the Black Scholes formula shows that the results obtained using
either this US$ view or the previous € view are identical. In general, the ADR reasoning is
more useful as it can be applied more widely than the Margrabe approach, which is limited to
European calls and puts.

13.3 FOREIGN CURRENCY STRIKE: FIXED EXCHANGE
RATE (QUANTO)

(i) Quantoed Call Option: Suppose our US customer has changed his mind: he wants a € option
on the German stock with a strike price in €; but he is concerned about a possible weakening
of € and therefore wants the conversion rate of the € payoff back into $ to be guaranteed.
Note the difference between this and the flexo: the only difference is that the conversion of the
€ payout was at the prevailing spot rate. If we are to receive a fixed amount of € in the future,
we can of course hedge the uncertainty by using the forward foreign exchange rate; but in this
case, the size of the € payout is unknown, making the pricing more difficult.

Another way of describing this option is to say that for each € that the stock price has risen
in the time T, the client receives a fixed number of US$. This is more akin to the way quantos
are often quoted, e.g. a payoff of $10 for each point that the Japanese Nikkei index exceeds
18,000 at maturity. Alternatively, if the payoff of a euro stock option is €100, the payoff of the
corresponding quanto is $100. This seems an unnatural instrument and is often referred to as
an “option in the wrong currency”.

Returning to our German stock and American customer, the payoff of the quanto may be
written $max[0, € ST − € X ] φ̄ where φ̄ is the constant exchange rate. This is a curious hybrid
quantity, mixing € and $; but the value of this payoff expressed in € at maturity is a pure €

quantity:

€ψT max[0, ST − X ] φ̄ = max[0, ψT ST − XψT ] φ̄ = max[0, UT − XψT ]φ̄

Once again, we have a Margrabe’s option: the exchange of stochastic asset UT for stochastic
asset XψT . The price of this option is

€ fquanto = €
{
U0 e−qU T N[d1] − Xψ 0 e−r$T N[d2]

}
φ̄

d1 = ln U0 e−qU T /Xψ 0 e−r$T + 1
2 σ 2

U/Xψ T

σU/Xψ

√
T

d2 = d1 − σU/Xψ

√
T ; σ 2

U/Xψ = σ 2
U + σ 2

Xψ + 2ρU/Xψ σU σXψ

(ii) What we have described as the unnatural appearance of a quanto becomes apparent at this point.
The quantity UT = ψT ST has no natural physical meaning. φT ST looks very similar, and is the
German stock price translated into dollars; but ψT ST has as much physical significance as the
price of oil multiplied by the price of cheese. However, it is a lognormally distributed random
variable and we can treat it simply as a mathematical entity. But this begs a critical question:
what precisely is the meaning of the “dividend” qU , and can we find a formula for it in terms
of observed variables? The answer is given by equation (A1.23) in the Appendix: in terms of
the variables of the present section, this can be written

qU = q + r$ − rε − ρSψσSσψ
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Substituting this into the last equation and also using the result σ 2
U/Xψ = σ 2

Sψ/Xψ = σ 2
S from

equation (A1.24) allows us to write the final result

€ fquanto = €ψ0
{

S0 e−(q+r$−r€ −ρSψσSσψ )T N[d1] − X e−r$T N[d2]
}
φ̄

(13.3)

d1 = ln
(
S0 e−(q+r$−r€ −ρSψσSσψ )T /X e−r$T

)+ 1
2σ 2

S T

σS

√
T

; d2 = d1 − σS

√
T

The US$ price of this option is obtained simply by dropping the constant ψ0 from the front of
the formula. The rule for finding the price of a € call option quantoed into US$ is therefore
simple. Use the formula for a € option (a flexo) but with the following substitutions:

� Replace the euro discount factor by the US discount factor: e−r€ T → e−r$T .
� Replace the stock dividend q by q → q + r$ − r€ − ρSψσSσψ .

Finally, if the reader has a feeling of unease with the rather cumbersome arguments for pricing a
quanto, he will be relieved to know that this is not the best we can do. The next subsection gives
a more elegant and general derivation of the same result and in Chapter 25 we use stochastic
calculus to gain further insights.

(iii) General Quantoed Option: The material so far in this section has specifically dealt with a
European call option. This covers most cases encountered in the market, and a put option
could be handled in just the same way; but the results can be generalized to cover any quantoed
option, however complicated.

Take a euro option whose value at time t is € ft and whose payoff is € fT . The corresponding
quanto (into US$) can be written € fquanto(t) and we previously saw that

€ fquanto(T ) = €ψT fT φ̄

Let us define a quantity Ft by

€ fquanto(t) = €ψt Ft φ̄

Our previous result implies that FT = fT . This does not allow us to write Ft = ft ; but if we
can set up a Black Scholes type equation for Ft , the initial conditions will be the same as they
would be for ft . Note that the payoff FT (= fT ) is completely independent of ψt so that FT is
independent of ψT .

fquanto(t) is a € asset dependent on two stochastic prices, and so satisfies the Black Scholes
equation for two assets in the form given by equation (12.6), with r → r€ ; S(1)

t → St ; q1 → q;
S(2)

t → ψt ; q2 → rS , i.e.

0 = ∂ fquanto(t)

∂t
+ (r€ − q) St

∂ fquanto(t)

∂St
+ (r€ − r$) ψt

∂ fquanto(t)

∂ψt
− r fquanto(t)t

+ 1

2

{
σ 2

S S2
t

∂2 ft

∂S2
t

+ σ 2
ψ ψ2

t

∂2 fquanto(t)

∂ψ2
t

+ 2ρSψσSσψ Stψt
∂2 fquanto(t)

∂St∂ψt

}

Writing fquanto(t) = ψt Ft φ̄ and remembering that Ft is independent of ψt , i.e. ∂ Ft/∂ψt =
166
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∂2 Ft/∂ψ2
t = 0, allows us to simplify the last equation to

0 = ∂ Ft

∂t
+ (r€ − q + ρSψσSσψ ) St

∂ Ft

∂St
+ 1

2
σ 2

S S2
t

∂2 Ft

∂S2
t

− r$ ft

This is just the single asset Black Scholes equation for the domestic German option, but with
the following parameter shifts:

� First put r€ → r$.
� Followed by q → q + r$ − r€ − ρSψ

σSσψ .

It was noted above that the initial conditions for Ft are just those for ft , the corresponding
domestic (€)option. Thus any € option can be quantoed to simply by making the above
parameter shifts in the formula for the domestic option. This is the result that was obtained for
a call option in the last subparagraph, but this analysis gives the procedures for quantoing any
option.

(iv) Hedging: The replication equation for a quanto may be written

fquanto = �S S0 + �ψψ0 − B(S0, ψ0, T )

where S0 and ψ0 are today’s stock price (in €) and US$ price (in €). From equation (13.3),
we have for a call option

�ψ = ∂ fquanto

∂ψ0
= fquanto

ψ0

which leaves �S S0 = B(S0, ψ0, T ) in the replication equation. The replication strategy for
this option may therefore be written:

� Invest a sum of € equal to the value of the quanto, convert this to US$ and place it on deposit.
� Borrow enough € to buy the equity stock delta of the option.

In practice, this would be executed through the forward foreign exchange market.

13.4 SOME PRACTICAL CONSIDERATIONS

(i) If we look at the correlations between currencies and securities, we find that in general they
are highly unstable – far more so than volatilities. There are of course exceptions: a German
company with a large part of its assets in the US will have a stock price which is strongly
correlated with the €/$ exchange rate. But apart from such obvious cases, the observed
correlation coefficient usually flops about, often changing sign as well as magnitude. We have
developed nice pricing formulas containing a constant correlation coefficient, while in fact it
is a random variable. There are two ways in which this is usually handled:

� Assume the worst case, putting the correlation coefficient equal to +1 or −1, depending on
which leads to the most conservative pricing.

� Ignore the problem: if correlation is generally weak and frequently changing sign, it is often
assumed that it will average out at zero over the life of the option. The option seller would
then set the correlation equal to zero and pad out the volatility a little to cover any shortfall
on the hedging. While this does not have any theoretical foundations, it is often the only
way of doing business; pricing by the worst case method is usually uncompetitive.
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(ii) Quanto with ρ = 0: In Section 13.3(iii) it was shown that any option can be quantoed from
€ to $ and the effect on the price of the option is accounted for by making adjustments to the
€ interest rate and stock dividend rate. With ρ = 0, the effect of quantoing is to change the
present value discount factor from e−r€ T to e−r$T and the forward rate from S0 e(−r€ q)T to
S0 e(r$q)T ; so the net effect is just to change interest rates.

Most quantos are quantoed into a higher interest rate currency. If an option on a US stock
is quantoed into pesos, the Mexican buyer can tell himself that he is not only eliminating FX
risk but getting his option cheaper as well!

(iii) Index Outperformance Options: These are fairly popular in the investment community and
are related to the options analyzed above. Consider an option to take advantage of the out-
performance of the US S&P index over the German DAX.

� The payoff might be fixed as

€max[0, φT (S&P)T − k(DAX)T ] or $ max[0, k(S&P)T − ψT (DAX)T ]

Depending on whether the payoff is to be in € or $; k is just a scaling constant. These are
clearly Margrabe options where one of the assets is an ADR type security.

� If the fund manager were neither in Germany nor the US, but in the UK, the payoff might
be required in sterling:

£ max
[
0, (S&P)T

/
φ

(£/$)
T − (CAC)T

/
φ

£/€

T

]
Again, Margrabe is used, but between two ADR type securities.

� Alternatively, the payoff may be defined as

max

[
0, k

(S&P)T

(DAX)T
φT − X

]

Here we use a modification of the Black Scholes equation for the quotient of two $-securities,
(S&P)t , and (DAX)t/φt . The latter must in turn be decomposed into two lognormal random
variables.

Note that each of the above options involves correlations between three or four random vari-
ables. Each of these correlations is likely to be unstable over time (although less so for stock
indices than for single stocks).

(iv) Each of the above forms expresses the outperformance of the S&P over the DAX. Unfortunately,
the most popular type of outperformance investment is a spread option whose payoff can be
written

$ max[0, [(S&P)T − k(DAX)T /φT ]X ]

While this looks simpler than the above forms, it is actually insoluble analytically. The problem
is that the difference of two lognormal random variables is not itself lognormal; by contrast,
the product is lognormal.

The reader is referred to Chapter 10 on Monte Carlo (particularly quasi-Monte Carlo) for
quick and efficient numerical methods for pricing these options.
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14
Options on One Asset at Two Points

in Time

In the last two chapters we have looked at various options involving two or more stochastic
assets. The resulting pricing formulas involved the correlation between the asset prices and
it was observed that in financial markets, correlation is usually highly unstable. We can de-
rive elegant formulas based on the assumption of constant correlation, but in the real world
most practitioners handle these products with extreme caution. However, there is one notable
exception.

Suppose we have an option whose payoff depends on two prices: but instead of these being
the prices of two different assets, they are the prices of the same asset at two different times
τ and T in the future. It is shown in Appendix A.1(vi) that the correlation between Sτ and ST

(or to be more precise, between the logarithms of the price movements over the periods τ and
T ) is ρ = √

τ/T . This is just about the only case where we can have confidence in the value
for ρ. The most common options in this category are described in this chapter, although other
examples will be encountered in later chapters.

14.1 OPTIONS ON OPTIONS (COMPOUND OPTIONS)

t Tt0

now maturity of
underlying

option

time t maturity
of compound

option

(i) Definitions: We will consider an option (the com-
pound option) on an underlying option. Both the
compound and the underlying options can be either
put or call options, so that we have four options
to consider in all. Half the battle in pricing these
options is simply getting the notation straight, and this can be summarized as follows:

UNDERLYING STOCK:
St and σ Stock price at time t and volatility
UNDERLYING OPTIONS:
Cu(St , X, t); Pu(St , X, t) Value at time t of an underlying call/put option. The general

case is written U (St , X, t)
T ; X Maturity date and strike of underlying options
COMPOUND OPTIONS:
CC ; PC ; CP ; PP Value at time t of a call on a call, put on a call, etc. The

general case is written �U (St , K , t)
τ ; K Maturity date and strike of the compound options
S∗

τ Critical stock price at time τ , which determines whether or
not the compound option is exercised. It is the value of Sτ

that solves the equation K = �u(S∗
τ , X, τ )
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(ii) Payoffs of Compound Options: Before moving on to pricing formulas, it is worth getting an
idea of the likely shape of the curve of the compound price. Let us start with a call on a call. At
time τ , the price of the underlying call is given by the curve shown in Figure 14.1. The payoff
of the compound call option is defined as

CC (τ ) = max[Cu(τ ) − K , 0]

Define S∗
τ as the value of Sτ for which K = CU (S∗

τ , X, τ ). Clearly, the payoff diagram is made
up of the x-axis and that part of the curve CU (τ ) which lies above K. This is shown as the solid
line in Figure 14.2, together with the compound option price before maturity (dotted curve).

tS
*
tS X e-r (T-t)

K

CU(t)

Figure 14.1 Underlying option (call)

tS
*
tS

CU (t)
UC (t )

Figure 14.2 Compound option (call on call)

Using the same analysis as for the call on call above, a put option on the underlying stock is
represented by the curve shown in Figure 14.3. The payoff of the compound put option, shown
in Figure 14.4, is

PP (τ ) = max[K − Pu(τ ), 0]

PU (t)

tS
*
tSX e-r (T-t)

K

Figure 14.3 Underlying option (put)

PU (t)

tS
*
tS

CP (t)

Figure 14.4 Compound option (put on put)

The remaining two compound options have curves shown in Figures 14.5 and 14.6.

(iii) Consider the most common case: a call on a call. In order to calculate the value of this compound
option, we use our well-established methodology of finding the expected value of the payoff in
a risk-neutral world, and discounting to present value at the risk-free rate; but now, the ultimate
payoff is a function of two future stock prices (Geske, 1979):

170



14.1 OPTIONS ON OPTIONS (COMPOUND OPTIONS)

tS

CP (t)

Figure 14.5 Compound option (call on put)

tS

PC (t)

Figure 14.6 Compound option (put on call)

� Sτ – The stock price when the compound option matures. If this is less than some critical
value S∗

τ , it will not be worth exercising the compound option since the underlying option
would then be cheaper to buy in the market. This may be written

only exercise if S∗
τ < Sτ , where S∗

τ is the solution to the equation

K = S∗
τ e−q(T −τ ) N[d∗

1 ] − X e−r (T −τ ) N[d∗
2 ]

d∗
1 and d∗

2 are the usual Black Scholes parameters with the stock price set equal to S∗
τ .

� ST – The stock price when the underlying option matures. The ultimate payoff at time T is
the payoff of the underlying call, if (and only if) the condition S∗

τ < Sτ was fulfilled. This
ultimate payoff is of course a function of ST .

Since the value of a compound option depends on the expected values of both Sτ and ST , we
must examine their joint probability distribution.

(iv) Following the approach of Section 5.2(i) for the Black Scholes formula, the price of this option
may be expressed as

CC (0) = PV

[
E

[
payoff of underlying option
−payment for underlying option

∣∣∣ only if compound
option was exercised

]
risk neutral

]

� “Only if compound option exercised” ≡ S∗
τ < Sτ .

� “Payment for underlying” = K at time τ .
� “Payoff of underlying option” (at time T) = max[0, ST − X ].

Combining this together and simplifying the notation gives

CC (0) = e−rT E[max[ST − X, 0]: S∗
τ < Sτ ] − e−rτ E[K : S∗

τ < Sτ ]

= e−rT E[ST − X : S∗
τ < Sτ ; X < ST ] − e−rτ K P[S∗

τ < Sτ ] (14.1)

These expectations are evaluated explicitly in Appendix A.1(v) and (ix), to give

CC (0) = S0 e−qT N2[d1, b1; ρ] − X e−rT N2[d2, b2; ρ] − K e−rτ N[b2] (14.2a)
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where

d1 = 1

σ
√

T

{
ln

S0 e−qT

X e−rT
+ 1

2
σ 2T

}
; b1 = 1

σ
√

τ

{
ln

S0 e−qτ

S∗
τ e−rτ

+ 1

2
σ 2τ

}

d2 = d1 − σ
√

T ; b2 = b1 − σ
√

τ ; ρ =
√

τ

T

and S∗
τ is a solution to the equation K = CU (S∗

τ , X, τ ). The lower limits of integration in
the above-mentioned appendices are the values of zτ and zT corresponding to Sτ = S∗

τ and
ST = X .

(v) General Formula: The put–call parity relationship

CC (0) + K e−rτ = PC (0) + CU (0)

may be used to calculate the formula for a put on an underlying call. The relationships
N[d] + N[−d] = 1 and N2[d, b; ρ] + N2[d, −b; −ρ] = N[d] [see equation (A1.17)] are used
to simplify the algebra, giving

PC (0) = X e−rT N2[d2, −b2; −ρ] − S0 e−qT N2[d1, −b1; −ρ] + K e−rτ N[−b2]

Similar results are obtained for put and call options on an underlying put option. The four
possibilities for compound options can be summarized in the general formula

�U (0) = φU φ�{S0 e−qT N2[φU d1, φU φ�b1; φ�ρ] − X e−rT N2[φU d2, φU φ�b2; φ�ρ]}
− φ�K e−rτ N[φU φ�b2] (14.2b)

where

d1 = 1

σ
√

T

{
ln

S0 e−qT

X e−rT
+ 1

2
σ 2T

}
; b1 = 1

σ
√

τ

{
ln

S0 e−qτ

S∗
τ e−rτ

+ 1

2
σ 2τ

}

d2 = d1 − σ
√

T ; b2 = b1 − σ
√

τ ; ρ =
√

τ

T
; S∗

τ solves K = �U (S∗
τ , X, τ )

φU =
{+1 underlying call
−1 underlying put

φ� =
{+1 compound call
−1 compound put

(vi) Installment Options: When they are first encountered, compound options often look to stu-
dents like rather contrived exercises in option theory. However they do have very practical
applications, as the following product description indicates:

� An investor receives a European call option which expires at time T and has strike X.
� Instead of paying the entire premium now, the investor pays a first installment of CC today.
� At time τ , the investor has the choice of walking away from the deal or paying a second

installment K and continuing to hold the option.

This structure clearly has appeal in certain circumstances; it is just the call on a call described
in this section, but couched in slightly less dry terms.
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14.2 COMPLEX CHOOSERS

Recall the simple chooser which was described in Section 11.2: we buy the option with strike
X at time t = 0 and at t = τ we decide whether the option which matures at t = T is a put
or a call. The complex chooser is similar in principle, but the put and call can have different
maturities and strikes (Rubinstein, 1991b). The payoff at time τ is therefore written

Payoffτ = max[C(Sτ , XC , TC − τ ), P(Sτ , X P , TP − τ )]

For some critical price S∗
τ at time τ , the value of the put and the call are exactly the same. S∗

τ

is obtained from the equation

C(S∗
τ , XC , TC − τ ) = P(S∗

τ , X P , TP − τ ) (14.3)

using some numerical procedure or the goal seek function of a spread sheet. For Sτ < S∗
τ , the

payoff is the put option, while for S∗
τ < Sτ the call option price is larger. Using the reasoning

of Section 14.1(iv) gives

fcomplex chooser = e−rTC E
〈
STC − XC

∣∣ S∗
τ < Sτ ; Xc < STC

〉
+ e−rTP E

〈
X P − STP

∣∣ Sτ < S∗
τ ; STP < X P

〉
The first term here is just the first term of equation (14.1) for a call on a call; similarly, the
second term is the first term of the formula for a call on a put. Instead of slogging through a
bunch of double integrals again, we just steal the answer from equation (14.2b):

fcomplex chooser = {
S0 e−qTC N2

[
d (C)

1 , b1; ρ(C)
]− XC e−rTC N2

[
d (C)

2 , b2; ρ(C)
]}

−{S0 e−qTP N2
[−d (P)

1 , −b1; ρ(P)
]− X P e−rTP N2

[−d (P)
2 , −b2; ρ(P)

]}
(14.4)

d (i)
1 = 1

σ
√

Ti

{
ln

S0 e−qTi

Xi e−rTi
+ 1

2
σ 2Ti

}
, i = C or P; b1 = 1

σ
√

τ

{
ln

S0 e−qτ

S∗
τ e−rτ

+ 1

2
σ 2τ

}

S∗
τ solves equation (14.3):

d (i)
2 = d (i)

1 − σ
√

Ti ; b2 = b1 − σ
√

τ ; ρ(i) =
√

τ

Ti

14.3 EXTENDIBLE OPTIONS

(i) Consider a European call option with maturity at time τ and strike price K; at maturity, the
holder has the choice of exercising or not exercising (Longstaff, 1990). Now suppose that
an additional feature is added to this option: the holder is given a third choice at maturity of
extending the option to time T at a new strike price X, in exchange for a fee of k. The payoff
of this extendible option at time τ is

max[0, Sτ − K , C(Sτ , X, T − τ ) − k]

The issues are best illustrated graphically. Figure 14.7 shows the value of the extended call
option C(Sτ , X, T − τ ) at time τ . This is just a simple graph of a European call option at time
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T − τ before maturity. The points to note on the graph are:

� X e−r (T −τ ) which is the well-known value at which the upper asymptote to the curve for a
call option crosses the x-axis.

� S∗
τ is simply defined by C(S∗

τ , X, T − τ ) = k.
� k + X e−r (T −τ ) which is obtained simply by construction as shown.

(ii) Figure 14.8 is a detail of the previous graph (with a shift of the x-axis upwards of k), to-
gether with the dotted line Sτ − K which is the payoff of the original (unextended) option at
time τ . PayoffE = max[0, Sτ − K , CE − k] is represented by the northwest boundary of this
composite graph:

� Sτ < S∗
τ – The payoff is zero because the other two terms in PayoffE are less than zero.

� S∗
τ < Sτ < S∗∗

τ – The payoff is CE − k, i.e. the holder would logically choose to extend
the option. S∗∗

τ is defined as the point at which the curve and the diagonal straight line in
Figure 14.8 intersect:

C(S∗∗
τ , X, T − τ ) − k = S∗∗

τ − K

� S∗∗
τ < Sτ – The payoff is Sτ − K , i.e. a holder would logically take the payoff of the original

(unextended) option.

tS

C(S , X, T - t)t

k +t
*S-r ( T - t )X e

k

-r ( T - t )X e

Figure 14.7 Call option at t = τ ; maturity at t = T

(iii) The position of the dotted line in Figure 14.8 depends on the value of the original strike K
relative to the extension fee k and the extended strike X. In addition to the relative positioning
shown in the graph and described in the last subsection, two other configurations are possible.
These may be determined at time t = 0 when the extendible option is being priced:

� K < S∗
τ – In this case, an extension would never be economically optimal; therefore, the

price of this option is just the same as that of a European call option maturing at time τ .
� k + X e−r (T −τ ) < K – In this case, extending the option would always be preferred to taking

the payoff of the original option; therefore, this is just a compound option (call on a call).

Any model we build for an extendible option must therefore test whether K is between S∗
τ

and S∗∗
τ and if not, just substitute the value of a European call or a compound option. In the

remainder of this section we ignore these special cases.
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tS

,

t
**S

t
*S -r(T-t)k +X eK

C(St , X T - ) - kt

tS - K

Figure 14.8 Detail previous (exercise boundary)

(iv) Using the same approach as for previous options examined in this chapter, today’s value of an
extendible call is obtained by taking the risk-neutral expectation of the payoff:

fext(0) = PV[E[0: Sτ < S∗
τ ] + E[Payoff CE − k : S∗

τ < Sτ < S∗∗
τ ] + E[Sτ − K : S∗∗

τ < Sτ ]]

= e−rT E [ST − X : S∗
τ < Sτ < S∗∗

τ ; X < ST ] − e−rτ k P[S∗
τ < Sτ < S∗∗

τ ]

+ e−rτ E[Sτ − K : S∗∗
τ < Sτ ] (14.5)

The terms in this last equation need some dissection; starting with the second and third terms
which depend only on Sτ and using equation (A1.7):

P[S∗
τ < Sτ < S∗∗

τ ] = P[Sτ < S∗∗
τ ] − P[Sτ < S∗

τ ]

= N[−b∗∗
2 ] − N[−b∗

2]

where

b∗∗
2 = 1

σ
√

τ

{
ln

S0 e−qτ

S∗∗
τ e−rτ

+ 1

2
σ 2τ

}

and similarly for b∗
2.

E[Sτ − K : S∗∗
τ < Sτ ] ≡ E[:][Sτ − S∗∗

τ : S∗∗
τ < Sτ ] + (S∗∗

τ − K )P[S∗∗
τ < Sτ ]

= erτ C(S0, S∗∗
τ , τ ) + (S∗∗

τ − K ) N[−Z∗∗]

where C(S0, S∗∗
τ , τ ) is the value of a call option with strike S∗∗

τ and maturity τ .
The bivariate conditional expectation in equation (14.5), depending on both Sτ and ST , can

be decomposed as follows:

E[ST − X : S∗
τ < Sτ < S∗∗

τ ; X < ST ]

= E[ST − X : S∗
τ < Sτ ; X < ST ] − E[ST − X : S∗∗

τ < Sτ ; X < ST ]

= A∗ − A∗∗

where A∗ appears as the first term in equation (14.1) for the value of a call on a call. Just
copying the answer from equation (A1.21) of the Appendix gives

A∗ = S0 e(r−q)T N2[b∗
1, d1; ρ] − X N2[b∗

2, d2; ρ]
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where

d1 = 1

σ
√

T

{
ln

S0 e−qT

X e−rT
+ 1

2
σ 2T

}
; d2 = d1 − σ

√
T

and b∗
1 and b∗

2 are defined as before. There is a similar expression for A∗∗.

(v) Equation (14.6) has become a bit of a monster, but each term has now been given explicitly
in terms of cumulative distributions. It will be apparent to the reader who has studied Section
A.1 of the Appendix that there are different ways of expressing the answers, so a term-by-term
comparison with the results quoted in other publications may be difficult: for example, there is
a term identical to the value of a call option with strike S∗∗ and maturity T; some other authors
show instead a call option with strike K, and with the other terms modified slightly (Longstaff,
1990).
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15

Barriers: Simple European Options

Barrier options are like simple options but with an extra feature which is triggered by the stock
price passing through a barrier. The feature may be that the option ceases to exist (knock-out)
or starts to exist (knock-in) or is changed into a different option. These are the archetypal
exotics and constitute the majority of exotic options sold in the market (Reiner and Rubinstein,
1991a).

The general topic is a large one and we have chosen to spread it across two chapters (plus a fair
chunk of the Appendix), rather than concentrating everything into one indigestible monolith.
If the reader is approaching the subject for the first time, he may feel daunted by the sizes of
the formulas and by the number of large integrals; but he should make a point of stepping back
to understand the underlying principles rather than drowning in the minutiae. There are in fact
only a couple of integrals which are just applied over and over again.

This chapter lays out the basic principles and is a direct continuation of the analysis of the
Black Scholes model, given in Chapter 5. The following chapter applies these principles to a
number of more complex situations; it finishes with an explanation of how to apply trees to
pricing barrier options numerically.

15.1 SINGLE BARRIER CALLS AND PUTS

(i) The reader should refer to Appendix A.8 which lays out the framework for this chapter. The key
result in this context is given by equation (A8.4). Imagine a Brownian particle starting at x0 = 0;
the probability distribution function of just those particles that have crossed a barrier at b is

Fcrossers(xT , T ) =
{

Freturn(xT , T ) for xT on the same side of the barrier as x0

F0(xT , T ) for xT on the other side of the barrier

F0(xT , T ) is the normal distribution function for a particle starting at x0 = 0 and with
unrestrained movement, i.e.

F0(xT , T ) dxT = 1

σ
√

2πT
exp

[
−1

2

(
xT − mT

σ
√

T

)2]
dxT = 1√

2π
e− 1

2 z2
T dzT = n(zT ) dzT

Freturn(xT , T )is the distribution function at time T , for those particles starting at x0 = 0,
crossing the barrier at b and then returning back across the barrier before time T . It is
shown in Appendix A.8(iii) that this can be written Freturn(xT , T ) = AF0(xT − 2b, T ), where
the term F0(xT − 2b, T ) is the normal distribution for a particle starting at x0 = 2b and
A = exp(2mb/σ 2); m is the drift rate of xT . We can then write

Freturn(xT , T ) dxT = exp

(
2mb

σ 2

)
1

σ
√

2πT
exp

[
−1

2

(
xT − 2b − mT

σ
√

T

)2]
dxT

= exp

(
2mb

σ 2

)
1√
2π

e− 1
2 z′2

T dz′
T = An(z′

T ) dz′
T
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(ii) We will now apply these results to stock price movements. Consider a stock with a starting
price ST in the presence of a barrier K. Closely following the Black Scholes analysis of
Section 5.2, we write xT = ln(ST /S0) and note that xT is normally distributed with mean
mT and variance σ 2T , where m = r − q − 1

2σ 2. We use the notation b = ln(K/S0), so that
A = exp(2mb/σ 2) = (K/S0)2m/σ 2

.
In the remainder of this section, various knock-in options will be evaluated. These will

involve a transformation from the variable ST to either of the variables zT or z′
T , which were

defined in the last subsection by

ST = S0 emT +σ
√

T zT = S0 emT +2b+σ
√

T z′
T

When setting up the integral for evaluating a call option, we integrate with respect to ST from
X to ∞. On transforming to the variables zT or z′

T , the integrals will run from Z X to ∞ or
from Z ′

X to ∞, where

Z X = ln(X/S0) − mT

σ
√

T
; Z ′

X = ln(X/S0) − mT − 2b

σ
√

T

Analogous limits of integration zK and z′
K are defined by

Z K = ln(K/S0) − mT

σ
√

T
; Z ′

K = ln(K/S0) − mT − 2b

σ
√

T

0SKX

0f0f0F 0f0f

returnF

0F

Figure 15.1 Down-and-in call; X < K

(iii) Explicit Calculations: In this section we calculate two
specific examples in order to illustrate how the formu-
las for prices are obtained. It would be repetitive and
boring to do this for every possible knock-in option.
However, generalized results for all options are given
later in the chapter.

Example (a): Down-and-in Call; X < K . The option
is explained schematically in Figure 15.1. The proba-
bility density function Fcrossers is different on each side of the barrier as shown.

The price of the option is written

Cd−i (X < K ) = e−rT
∫ +∞

0
(ST − X )+Fcrossers dST = e−rT

∫ +∞

X
(ST − X )Fcrossers dST

= e−rT
∫ K

X
(ST − X )F0 dST + e−rT

∫ ∞

K
(ST − X )Freturn dST

The first integral on the right-hand side can be split into two manageable parts as follows:

e−rT
∫ K

X
(ST − X )F0 dST = e−rT

∫ ∞

X
(ST − X )F0 dST − e−rT

∫ ∞

K
(ST − X )F0 dST

= [BSC ] − [GC ]

The first integral here is just the Black Scholes formula for a call with strike X . The second
integral is the formula for a gap option which was described in Section 11.4.
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To evaluate the second integral in the expression for Cd−i (X < K ), we make the transfor-
mation to the standard normal variate z′

T described in subsection (ii) and use the integral result
of equations (A1.7):

[JC ] = e−rT
∫ ∞

K
(ST − X )Freturn dST = e−rT

∫ ∞

z′
K

(S0 emT +2b+σ
√

T z′
T − X )An(z′

T ) dz′
T

= A e−rT
{

S0e2b+(m+ 1
2 σ 2)T N[σ

√
T − Z ′

K ] − X N[−Z ′
K ]
}

The value of this option can then be written

Cd−i (X < K ) = [BSC ] − [GC ] + [JC ]

0S K X

returnF

0F

Figure 15.2 Up-and-in put; K < X

Example (b): Up-and-in Put; K < X . The reasoning
in this example is precisely analogous to that of the last
example (see Figure 15.2). The reader is asked to pay
particular attention to the signs of the various terms:

Pu−i (K < X ) = e−rT
∫ +∞

0
(X − ST )+Fcrossers dST

= e−rT
∫ K

0
(X − ST )Freturn dST

+ e−rT
∫ X

K
(X − ST )F0 dST

The second integral on the right may be written

e−rT
∫ X

K
(X − ST )F0 dST = e−rT

∫ X

0
(X − ST )F0 dST − e−rT

∫ K

0
(X − ST )F0 dST

= [BSP ] − [GP ]

As in the previous example, the first term is the Black Scholes formula (for a put option this
time) while the second term is again a gap option.

The first integral is solved by making the same transformation as in the last example and
using the integral result of equations (A1.7):

[JP ] = e−rT
∫ K

0
(X − ST )Freturn dST = e−rT

∫ Z ′
K

−∞
(X − S0 emT +2b+σ

√
T z′

T )An(z′
T ) dz′

T

= A e−rT
{

X N[Z ′
K ] − S0 e2b+(m+ 1

2 σ 2)T N[Z ′
K − σ

√
T ]
}

The value of the option is written

Pu−i (K < X ) = [BSP ] − [GP ] + [JP ]

(iv) Generalizing the Results: If the reader compares the results of the last two examples he will
be struck by how similar they are. The essential differences are:

� The first example is for a call while the second is for a put. Each of the terms reflects this
difference, which can be accommodated by the use of the parameter φ(= +1 for a call
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and −1 for a put); this was explained in Section 5.2(iv) where we wrote a general Black
Scholes formula which could be used for either a put or a call.

� If we make use of the parameter φ, we can almost write a general expression which could
be applied to either of the last two examples. There is, however, still a difference in the
term [J]: the signs of the arguments of the cumulative normal functions are reversed. This is
essentially due to the fact that the limits of integration were Z ′

K to +∞ in the first example
and −∞ to Z ′

K in the second; the difference comes because the stock price had to fall to
reach the barrier in the first example but rise in the second.

Therefore a factor ψ(= +1 for rise-to-barrier and −1 for fall-to-barrier) multiplying the argu-
ments of the cumulative normal function of [J] would allow us to write a general expression
which prices either Cd−i (X < K ) or Pu−i (K < X ).

15.2 GENERAL EXPRESSIONS FOR SINGLE BARRIER OPTIONS

The reader should now be in a position to derive a formula for any knock-in option. If he really
enjoys integration, he can work out the integral results for all the puts and calls with barriers in
different positions. Without showing all the detailed workings, we give the results in the next
subsection. First, however, we take note of a simple but powerful relationship:

Knock-in Option + Knock-out Option = European Option

This result is obvious if we consider a portfolio consisting of two options which are the same
except that one knocks in and the other knocks out. Whether or not the barrier is crossed, the
payoff is that of a European option. This relationship allows us to calculate all the knock-out
formulas from the knock-in results.

The following definitions are used:

[BS] = e−rT φ
{

S0 e(m+ 1
2 σ 2)T N[φ(σ

√
T − Z X )] − X N[−φZ X ]

}
[G] = e−rT φ

{
S0 e(m+ 1

2 σ 2)T N[φ(σ
√

T − Z K )] − X N[−φZ K ]
}

[H] = A e−rT φ
{

S0 e2b+(m+ 1
2 σ 2)T N[ψ(Z ′

X − σ
√

T )] − X N[ψ Z ′
X ]
}

[J] = A e−rT φ
{

S0 e2b+(m+ 1
2 σ 2)T N[ψ(Z ′

K − σ
√

T )] − X N[ψ Z ′
K ]
}

ψ =
{+1 up to barrier
−1 down to barrier

φ =
{+1 call
−1 put

m = r − q − 1
2σ 2; b = ln(K/S0); A = exp(2mb/σ 2) = (K/S0)2m/σ 2

Z X = ln(X/S0) − mT

σ
√

T
; Z ′

X = ln(X/S0) − mT − 2b

σ
√

T

Z K = ln(K/S0) − mT

σ
√

T
; Z ′

K = ln(K/S0) − mT − 2b

σ
√

T

The formulas for all the single barrier options are given in Tables 15.1 and 15.2.
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15.3 SOLUTIONS OF THE BLACK SCHOLES EQUATION

Table 15.1 Single barrier knock-in options

Calls Puts Formula

Cd−i (X < K ) Pu−i (K < X ) [BS] − [G] + [J]
Cd−i (K < X ) Pu−i (X < K ) [H]
Cu−i (X < K ) Pd−i (K < X ) [G] + [J] − [H]
Cu−i (K < X ) Pd−i (X < K ) [BS]

Table 15.2 Single barrier knock-out options

Calls Puts Formula

Cd−o(X < K ) Pu−o(K < X ) [G] − [J]
Cd−o(K < X ) Pu−o(X < K ) [BS] − [H]
Cu−o(X < K ) Pd−o(K < X ) [BS] − [G] − [J] + [H]
Cu−o(K < X ) Pd−o(X < K ) 0

15.3 SOLUTIONS OF THE BLACK SCHOLES EQUATION

(i) The general approach to pricing barrier options has been to use the Fokker Planck equation
to derive an analytic expression for the probability distribution function of particles crossing
a barrier. This explicit probability density function is then used to calculate an expression for
the value of a knock-in option; the knock-out option prices are obtained from the symmetry
relationship which states that the sum of the values of a knock-out and a knock-in option equals
the value of the corresponding European option.

In Appendix A.4 we discuss the close relationship between the Kolmogorov equations and
the Black Scholes equation. A reader might well ask why we bothered to go to the trouble of
a two-step solution (first, find the probability distribution function; second, calculate the risk-
neutral expected payoff), rather than solving the Black Scholes equation directly. The reason
is partly historical: at the time when people first needed to calculate a formula for a barrier
option, the expression for the transition probability density function for a Brownian particle
in the presence of an absorbing barrier had already been worked out; it was just a question of
looking it up in the right book. But there are other good reasons for the approach adopted: it
allows a unified approach to all knock-in options with an emphasis on the underlying processes
in terms of probabilities. The pure solution of differential equations can be rather sterile, without
much reference to underlying processes. Furthermore, in some cases, the boundary conditions
for the Black Scholes model are rather hard to apply. We will therefore content ourselves here
by sketching out the approach to a relatively easy example: the down-and-out call (X < K )
which is the “out” equivalent of the down-and-in call illustrated in Figure 15.1.

The approach is identical to that of Section 5.3 where we solved the Black Scholes equation
for a European call option. The fundamental equation is unchanged. We seek a solution in the
range K < S0 < ∞ subject to the following initial and boundary conditions:

� C(S0, 0) = max[0, S0 − X ]; X < K ; K < S0 < ∞
� limS0→K C(S0, T ) → 0
� limS0→∞ C(S0, T ) → S0 e−qT − X e−r t
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15 Barriers: Simple European Options

Using the notation and transformations of Section 5.3, the Black Scholes equation becomes
∂v/∂T ′ = ∂2v/∂x2 with initial and boundary conditions

� v(x, 0) = max[0, e(k+1)x − X ekx ]; ln X < b; b < x0 < ∞; b = ln K
� limx→b v(x,T ′) → 0
� limx→∞ v(x,T ) → e(k+1)x+(k+1)2T ′ − X ekx+k2T ′

The solutions of this type of equation are given by equations (A6.8) or (A7.10) in the Appendix:

v(x, T ′) =
∫ +∞

b
ekx max[0, ex − X ]

1

2
√

πT ′

[
exp

[
− (y − x)2

4T ′

]
−exp

[
− (y + x + 2b)2

4T ′

]]
dy

We can replace [0, ex − X ] by ex − X since this is always positive in the range of integration.
It then just remains to follow the computational procedures set out in Section 5.3 to work out
this integral; unsurprisingly, the answer is the same as that given in Table 15.1.

15.4 TRANSITION PROBABILITIES AND REBATES

(i) First Passage or Absorption Probabilities: The pseudo-probability of a barrier above being
crossed is straightforward to calculate. It is simply the sum of the probabilities of a particle
crossing and returning, and a particle crossing and staying across. In terms of equity prices,
this is written

Pcros sin g =
∫ ∞

−∞
Fcrossers dST =

∫ K

−∞
Freturn dST +

∫ ∞

K
F0 dST

=
∫ Z ′

K

−∞
An(z′

T ) dz′
T +

∫ +∞

Z K

n(zT ) dzT = A N[Z ′
K ] + N[−Z K ]

There is an analogous expression for the pseudo-probability of crossing a barrier below, and
the general expression can be written

Pcros sin g = A N[ψ Z ′
K ] + N[−ψ Z K ]

= exp

(
2mb

σ 2

)
N

[
−ψ

(b + mT )

σ
√

T

]
+ N

[
−ψ

(b − mT )

σ
√

T

]
(15.1)

It should be remembered that this is a pseudo-probability in a risk-neutral world. It is not the
probability in the real world that an option will be knocked in or out.

(ii) Knock-in Rebate: Occasionally, barrier options are structured so that the purchaser receives a
lump sum payment if his investment strategy does not work. For example, if he buys a knock-in
option and the stock price does not reach the barrier before maturity, he receives a fixed amount
R at maturity.

The upfront value of this rebate is simply the present value of R multiplied by the pseudo-
probability of the barrier not being reached:

Rmaturity = e−rT R(1 − Pcros sin g)

where Pcros sin g is given in the last subsection.
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15.5 BINARY (DIGITAL) OPTIONS WITH BARRIERS

(iii) Knock-out Rebate: More common than for knock-in options, rebates are often given as con-
solation prizes with knock-out options. However, the calculation of this type of rebate is more
complex since the lump sum is paid as soon as the knock-out occurs; we cannot then calculate
the present value just by discounting back over the period T .

In Appendix A.8(vii) it is seen that the first passage time τ (time to first crossing) is a random
variable with a well-defined probability distribution function

gabs(τ ) = ψb

σ
√

2πτ 3
exp

[
− 1

2σ 2τ
(b − mτ )2

]

By definition, we can write

Pcros sin g = exp

(
2mb

σ 2

)
N

[
−ψ

(b + mT )

σ
√

T

]
+ N

[
−ψ

(b − mT )

σ
√

T

]
(15.2)

The value of a knock-out rebate of $1 is given by the following integral:

Rfirst passage =
∫ T

0
e−rτ gabs(τ ) dτ

On the face of it, this looks like a very difficult integral to solve: but a little trick helps;
completing the square in the exponential gives

e−rτ gabs(τ ) = exp

[
− b(γ − m)

σ 2

]{
ψb

σ
√

2πτ 3
exp

[
− 1

2σ 2τ
(b + γ τ )2

]}

= exp

[
− b(γ − m)

σ 2

]
habs(τ )

where γ = √
m2 + 2rσ 2 and habs(τ ) is the same as gabs(τ ), but with the replacement m → γ .

Using the result of equation (15.2), we can write

Rfirst passage =
∫ T

0
e−rτ gabs(τ ) dτ = exp

[
− b(γ − m)

σ 2

] ∫ T

0
habs(τ ) dτ

= exp

[
− b(γ − m)

σ 2

]{
exp

[
2γ b

σ 2

]
N

[
−ψ

(b − γ T )

σ
√

T

]
+ N

[
−ψ

(b + γ T )

σ
√

T

]}
(15.3)

15.5 BINARY (DIGITAL) OPTIONS WITH BARRIERS

(i) Recap of Straight Binaries: Referring back to Section 11.4(iv), a gap option can be written as
(Reiner and Rubinstein, 1991b)

fgap = φ{S0[BS]1 − R[BS]2} = fasset − fcash

where [BS]1 and [BS]2 are the first and second terms in the Black Scholes formula. R is a cash
sum which may or may not be equal to the strike price X ; if it is, we just have the formula for
a put or a call option. φ(= ±1) differentiates between puts and calls. fasset and fcash are the
prices of asset-or-nothing and cash-or-nothing options with strike X.
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15 Barriers: Simple European Options

(ii) Barrier options may be decomposed into digital options in just the same way. This is best
illustrated by way of an example. Returning to the example of Section 15.1(iii), the formula
for the down-and-in call can be decomposed as described in the last subsection:

Cd−i (X < K ) = {S0[BSC ]1 − X [BSC ]2} − {S0[GC ]1 − X [GC ]2} + {S0[JC ]1 − X [JC ]2}

X K 0S

0F

returnF
$1

Figure 15.3 Digital knock in: down-
and-in; cash or nothing

Collect together the terms in −X ; its coefficient
[BSC ]2 − [GC ]2 + [JC ]2 is the price of an option
with the following payoff at time T (Figure 15.3):

• $1, if the barrier has been crossed and X < ST ;
• 0 otherwise.

Similarly, the terms in S0 give the price of an option
with the following payoff at time T (Figure 15.4):

� ST , if the barrier has been crossed and X < ST ;
� 0 otherwise.

X K 0S
0F

returnF

0

Figure 15.4 Digital knock in: down-and-
in; asset or nothing

These last two examples are of course, for specific
configurations of S0, X and K . Formulas for other
configurations can be obtained from Tables 15.1 and
15.2.

(iii) One Touch Options (Immediate Payment): The bi-
nary options of the last subsection give a positive
payoff if two conditions are met: the barrier is
crossed and the option expires in-the-money. One
touch options are closely related but do not have
the second condition. They also pay out as soon as the barrier has been crossed.

The one-touch cash-immediately option with payout R is clearly just the same as the knock-
out rebate and is priced by equation (15.3).

The one-touch asset-immediately option is priced in just the same way: at time τ when the
barrier is crossed, Sτ is equal to K ; but Sτ is the payout, so we price this option as a knock-out
rebate in which the lump sum payment is equal to K.

(iv) One Touch Options (Payout at Expiry): These are simple adaptations of previously obtained
formulas:

Cash at expiry: use e−rT R Pcros sin g

Asset at expiry uses the appropriate digital barrier option, putting the strike price equal
to zero.

15.6 COMMON APPLICATIONS

(i) American Capped Calls (Exploding Calls): These are American call options in which the
payout is capped at a certain certain amount (K − X ), irrespective of when the option is
exercised.

A European capped call is the same as a call spread. If we buy a call with strike X and sell
a call with a higher strike K , the maximum payoff of the combination at maturity is (K − X ).
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15.6 COMMON APPLICATIONS

However, this structure does not carry over to American options because each option holder
can choose when to exercise: the person to whom we have sold the call may not wish to exercise
when we do.

The American capped call can instead be priced as an up-and-out call, (X < K ) with a rebate
of (K − X ) paid at knock out. A similar approach is used to price an American capped put.

0S 1K 2K 3K

(ii) Ladders: When investors buy European call options,
it is not uncommon for them to watch the price of
the underlying stock soar, and with it the value of the
option – only to see both plunge out-of-the-money at maturity. Ladder options have payoffs
which capture the effects of such movements.

The simplest form of such a scheme would be a series of one-touch cash-immediately
options. The payoffs would be

� K1 − S0 received as soon as the stock price reaches K1;
� K2 − K1 received as soon as the stock price reaches K2; etc.

X K1 K2

(iii) Fixed Strike Ladders: The simple ladder of the last
subsection does not really display the features of a call
option. There are two commonly used structures which
are fundamentally call options but which at the same
time capture large up-swings in the stock price (Street,
1992). The fixed strike ladder has the following payoff (we assume for simplicity that the call
option is at-the-money, i.e. S0 = X ):

� If St never reaches K1, we just have a plain call option with strike X ;
� If St gets as far as K1 before maturity, the call payoff has a minimum of K1 − X ;
� If St gets as far as K2, the minimum payoff is K2 − X ; etc.

X

knock in at K 2knock in at K

1knock in at K

2knock in at K

K1 K2

X

knock in at K1 knock in at K2

knock in at K1

knock in at K2

Figure 15.5 Construction of fixed strike
ladder

The combination of options which gives this pay-
off is summarized below. The analysis is easiest
to follow by referring to Figure 15.5.

• C(X ). Buy a European call option, strike X .
If St never rises above K1, this gives the payoff
needed.

• Pu−i (K1, K1) − Pu−i (X, K1). Buy a knock-in
put, strike K1 and sell a knock-in put, strike X .
If at some point St crosses K1 (but not K2),
there are two possibilities: if the final stock
price ST is between K1 and K2, the two knocked-in puts are out-of-the-money so the payoff
comes just from the original call option: ST − X . For ST anywhere below K1, the payoff is
(K1 − X ).

• Pu−i (K2, K2) − Pu−i (K1, K2). As in the last step, we have a long put with strike K2 and a
short put with strike K1, both of which knock in at K2. We use precisely the same reasoning
as for the last step: if at some point St crosses K2, there are two possibilities: we have a call
option payoff for K2 < ST and a payoff (K2 − X ) for all ST < K2, etc.
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15 Barriers: Simple European Options

1K2K X

(iv) Floating Strike Ladders: This structure captures large
downward swings in the stock price, by changing the
strike price to lower values as barriers are crossed. The
payoff is as follows:

� If St never reaches K1, we just have the call option
with strike X .

� If St reaches K1 (but not K2) before maturity, the call option with strike X is replaced by a
call with strike K1.

� If St reaches K2, the call option with strike K1 is replaced by a call with strike K2, etc.

The structure of the barrier options needed to produce this payoff is simpler to follow than in
the last subsection (see Figure 15.6).

K1K2

X

1knock in at K

2knock in at  K

2knock in at K knock in at  K

knock in at K1
knock in at K2

knock in at K2 knock in at K1

Figure 15.6 Construction of floating strike
ladder

• C(X ). Buy a European call option with strike X .
If St never falls as far as K1, this gives the payoff
we need.

• Cd−i (K1, K1) − Cd−i (X, K1). Buy a knock-in
call option with strike K1 and sell a knock-in call
with strike X ; both knock in at K1. The sold
option cancels the original call option of the first
step above, and we are left with a new call,
strike K1.

• Cd−i (K2, K2) − Cd−i (K1, K2). Again, the second of these cancels the call option left from
the previous step. The net result is that if these two options knock in (St crosses the K2

barrier), we are left with a call option, strike K2, etc.

15.7 GREEKS

10.00

20.00

90.00 100.00 110.00 120.00 130.00

Figure 15.7 Up-and-out call option

By their nature, barrier options display a sudden increase or decrease in value as the stock price
crosses a barrier. We have already seen in the discussion of digital options in Section 11.4(v) that
sudden changes in option value
for small changes in the price of
the underlying stock can cause
problems in hedging.

(i) Figure 15.7 shows the value of
an up-and-out call option plot-
ted against the stock price. Far
from the barrier, the value of the
option coincides with that of the
correspondingEuropeancallop-
tion. In this region the probabil-
ity of a knock-out is remote; but
as the barrier is approached, the
value of the knock-out option declines sharply. This creates a very pointed peak in the
value of the option; put another way, the negative gamma of the option becomes very
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15.8 STATIC HEDGING

large. In fact, because of the sharpness of the peak, the negative gamma of this type of op-
tion is more pronounced than for any other option commonly encountered in the market.
Trading operations would usually avoid dealing in an option of this type except in small
size.

1.00

3.00

5.00

K
Call
Option

Knock in
Call

95.00 100.00 105.00

Figure 15.8 Down-and-in call option

All barrier options have some sort of discontinuity: but this does not mean that they
are all prone to gamma blow-up. Figure 15.8 shows a down-and-in call where the bar-
rier is out-of-the-money. At high
stock prices, the value of the op-
tion is small since the probability
of knock-in is small. As the price
drops, the likelihood of knock-
in increases, but at the barrier
the underlying call option is out-
of-the-money and consequently
has small value. This type of op-
tion therefore presents less of a
problem than the last example;
but even in this case, the delta
moves from being negative (for
the down-and-in call) to being positive (European call option) when the barrier is crossed.

15.8 STATIC HEDGING

(i) The difficulty of hedging barrier options has led practitioners to try to find alternatives to the
standard delta hedging techniques. Dynamic hedging works well for relatively benign options
such as standard puts and calls, but can be very risky and expensive for options which have
very high gamma over long periods.

Take the example of the down-and-in call option which is illustrated in Figure 15.8. A glance
at the graph shows that while the stock price remains above the barrier, the general form of the
option price is similar to that of a put option; but as soon as the barrier is touched, the option
becomes a standard call option. When these types of option were first introduced in the market,
traders soon realized that there is a simple hedging strategy: sell a put option when the option
is first taken on; then buy back the put and sell a call if and when the barrier is reached. There
are a couple of difficulties with this strategy: first, it assumes that we can exactly exchange the
short put for a short call at precisely the point when the stock price hits the barrier; this can
be a challenge if the market is lively. Second, what type and amounts of puts and calls do we
need? To answer this question we need to make a short diversion.

(ii) Put-Call Symmetry: Recall (Carr and Bowie, 1994) from the put–call parity relationship of
Section 2.2(i) that if the forward rate equals the strike price (F0T = X or S0 e−qT = X e−rT ),
then the values of a put and a call option are the same:

C0(S0, F0T , T ) = P0(S0, F0T , T )

The Black Scholes formula for a call option on one share with strike XC , and a put option on

187



15 Barriers: Simple European Options

n shares with strike X P , is taken from equations (5.1) and (5.2):

C0(S0, XC , T ) = e−rT {F0T N[dC1] − X N[dC2]}
n P0(S0, X P , T ) = n e−rT {X N[−dP2] − F0T N[−dP1]}

di1 = 1

σ
√

T

(
ln

F0T

Xi
+ 1

2
σ 2T

)
; di2 = di1 − σ

√
T ; i = C or P

We can easily confirm the put–call parity result previously obtained by using these two pricing
formulas and putting n = 1, F0T = XC = X P (i.e. ln F0T /X = 0) and N[a] = 1 − N[−a].

A further relationship between puts and calls, known as put–call symmetry, may be deduced
from the above Black Scholes formulas if we put n = F0T /X P = XC/F0T . Substituting for n
and for X P from this last relationship into the second Black Scholes formula above gives

C0(S0, XC , T ) = n P0

(
S0,

F2
0T

XC
, T

)
; n = XC

F0T

This says that at any time before maturity, a call option with strike XC is equal in value to n put
options with strike X P (= F2

0T /XC ). In the special case where there is no drift (i.e. r = q or
F0T = S0), the call option is equal in value to n = XC/S0 put options with strike X P = S2

0/XC .

CXKPX
0

S

Figure 15.9 Put–call symmetry;
down-and-in call

(iii) Replication of a Down-and-in Call: Using the
put–call symmetry of the last subsection, we will now
devise a strategy to replicate the down-and-in call
option illustrated in Figure 15.9.

• If the stock price always remains above K , there
will be no payoff under the knock-in option.

• Once the stock price has touched the barrier at K,
the option becomes a call option with strike XC . At the point ( t = τ ) when the stock price
touches K we need to buy a call option with strike XC and maturity T .

• The cost of this call will be C(K , XC , T − τ ); what instrument can we buy today which
will have this value in time τ?

• Let us make the simplifying assumption that the stock price has no drift, i.e. that FτT = Sτ .
The result given at the end of the last subsection shows that with this assumption, n = XC/K
put options with strike X P = K 2/X would have precisely the same value as the call option
which we need to buy.

• Our strategy is therefore to buy this package of puts for a price n P(S0, K 2/X, T ). If the
stock price drops to K , these puts would have appreciated to the point where we can afford
to buy the call we need.

Note that the above strategy strictly depends on the no-drift assumption; without this condition,
the strike price and the number of put options depends on τ . However, for relatively small values
of drift the technique remains useful, perhaps augmented by a small amount of delta hedging.

Unfortunately, this neat static approach can only be applied to half the barrier options.
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16

Barriers: Advanced Options

The last chapter laid out the principles of European barrier option pricing. This chapter con-
tinues the same analysis, applied to more complicated problems. The integrals get a bit larger,
but the underlying concepts remain the same. Lack of space prevents each solution being given
explicitly; but the reader should by now be able to specify the integrals corresponding to each
problem, and then solve them using the results of Appendix A.1.

16.1 TWO BARRIER OPTIONS

These are options which knock out or in when either a barrier above or a barrier below the
starting stock price is crossed. The analysis is completely parallel to what we have seen for a
single barrier option (Ikeda and Kunitomo, 1992).

(i) In the notation of this chapter, F0(xT , T ) is the normal distribution function for a particle
starting at x0 = 0. The function is given explicitly in Section 15.1(i). Fnon-abs is the probabil-
ity distribution function for particles starting at x0 = 0 which have not crossed either barrier
before time T. Two expressions have been derived for this function, which are given by equa-
tions (A8.9) and (A8.10) of the Appendix. They are both infinite series although there is no
correspondence between individual terms of the two series:

1. Fnon-abs(xT , T ) = 1

σ
√

2πT

+∞∑
n=−∞

[
exp

(
+mun

σ 2

)
exp

[
− 1

2σ 2T
(xT − mT − un)2

]

− exp

(
+mvn

σ 2

)
exp

[
− 1

2σ 2T
(xT − mT − vn)2

]]

2. Fnon-abs(xT , T ) = exp

(
mxT

σ 2

) ∞∑
n=1

[
an e−bn T sin

nπ

L
(xT + b)

]
L = a + b; un = 2Ln; vn = 2(Ln − b)

an = 2

L
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nπb

L
; bn = 1

2

{(
µ

σ

)2

+
(

nπσ

L

)2}

(ii) The reasoning of Appendix A.8(iv) and (v) demonstrates that the distribution functions of
particles which start at x0 = 0, then cross either the barrier at −b or +a, and then return to the
region −b to +a can be written

Freturn = F0 − Fnon-abs
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-b X a

returnF 0F0F

0S

Figure 16.1 Double barrier-and-in call

The total probability distribution function for all
those particles that cross one of the barriers can now
be written

Fcrossers =




F0(xT , T ) xT < −b

Freturn(xT , T ) −b < xT < a

F0(xT , T ) a < xT

(iii) As an example, we will look at the knock-in call op-
tion shown in Figure 16.1. We do not really need to
worry about whether we move up or down to the barrier:

Cki = e−rT
∫ +∞

0
(ST − X )+Fcrossers dST = e−rT

∫ +∞

X
(ST − X )Fcrossers dST

= e−rT
∫ a

X
(ST − X )Freturn dST + e−rT

∫ ∞

a
(ST − X )F0 dST (16.1)

The second integral is completely standard. The first depends on which form of series is used
for Fnon-abs. The sine series is completely straightforward to integrate while the other alternative
is handled using the procedures of Section 15.1.

(iv) The question of which of the two series to use and how many terms to retain is best handled
pragmatically. Set up both series and see how fast convergence takes place in each case. Both
series dampen off regularly, so it is for us to choose how accurate the answer needs to be. We
should expect to perform the calculation with one series or the other within four to six terms,
and often less.

16.2 OUTSIDE BARRIER OPTIONS

The barrier options described so far have been European options which are knocked in or
knocked out when the price of the underlying variable crosses a barrier. An extension of this is
a European option which knocks in when the price of a commodity other than the underlying
stock crosses a barrier. For example, an up-and-in call on a stock which knocks in when a foreign
exchange rate crosses a barrier. These options are called outside barrier options, as distinct
from inside barrier options, where the barrier commodity and the commodity underlying the
European option are the same. The reason for the terminology is anybody’s guess (Heynen
and Kat, 1994a).

We could repeat most of the material presented so far in this chapter, adapted for outside
barriers rather than inside barriers. However, these options are relatively rare so we will simply
describe a single-outside-barrier up-and-in call option; the reader should be able to generalize
this quite easily to any of the other options in this category.

(i) Outside Barrier, Up and In: The general principle remains as before; it is merely the form of
some of the distributions that is different. The price of the option is the present value of the
risk-neutral expectation of the payoff (Figure 16.2):

Coutside
u−i = e−rT

∫ +∞

ST =0

∫ +∞

QT =0
(ST − X )+Fjo int dST dQT (16.2)
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Figure 16.2 Outside barrier, up-and-in call

where ST is the maturity value of the stock un-
derlying the call option and QT is the maturity
value of the barrier commodity. The form of this
is the same as for inside barriers; but we need
to find an expression for Fjo int which is the joint
probability distribution for the two price vari-
ables. The large topic of derivatives which de-
pend on the prices of two underlying assets is at-
tacked in Chapter 12. The material of that chapter
and of Appendix A.1 is used to solve equation
(16.2).

(ii) Separate Distributions of the Two Variables: As
before, we transform to the logs of prices: xT =
ln(ST S0); yT = ln(QT /Q0). The distribution of xT

is normal and the variable zT = [ln(ST /S0) − mT ]/
σ
√

T is a standard normal variate (mean 0, variance 1); σ is the volatility of the stock and
m − r − q − 1

2σ 2.
The variate yT has a more complex distribution. As explained in Section 13.1(i), yT is

distributed as Fcrossers(yT , T ) which has different forms above and below the barrier at QT = K
or yT = ln(K/Q0) = b.

b < yT : Fcrossers = F0(yT , T ) which is the distribution at time T of a particle which started at
y0 = 0 and has drift m Q = r − qQ − 1

2σ 2
Q and variance σ 2

Q . The variable

wT = ln(QT /Q0) − m Q T

σQ

√
T

is a standard normal variate.

yT < b: Fcrossers = Freturn = AF0(yT − 2b, T ) where A = exp(2m Qb/σ 2
Q) = (K/Q0)2m Q/σ 2

Q

and F0(yT − 2b, T ) is the distribution function for a particle which started at y0 = 2b
and has drift m Q . The variable

w′
T = ln(QT /Q0) − m Q T − 2b

σQ

√
T

is therefore a standard normal variate.

(iii) Equation (16.2) may be rewritten

Coutside
u−i = e−rT

{∫ +∞

ST =X

∫ K

QT =0
A(ST − X )F1 jo int dQT dST

+
∫ +∞

ST =X

∫ +∞

QT =K
(ST − X )F2 jo int dQT dST

}

and transforming to the variables ZT , wT and w′
T , this last equation can be written more
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precisely as

Coutside
u−i = e−rT

{
A
∫ +∞

Z X

∫ W ′
K

−∞
(S0 emT +σ

√
T zT − X )n2(zT , w′

T ; ρ) dzT dw′
T

+
∫ +∞

Z X

∫ +∞

WK

(S0 emT +σ
√

T zT − X )n2(zT , wT ; ρ) dzT dwT

}

Z X = ln(X/S0) − mT

σ
√

T
; W ′

K = ln(K/Q0) − m Q T − 2b

σQ

√
T

; WK = ln(K/Q0) − m Q T

σQ

√
T

n2(zT , w′
T ; ρ) is the standard bivariate normal distribution describing the joint distribution of

the two standard normal variates zt and w′
t , which have correlation ρ. n2(zT , wT ; ρ) is the

standard bivariate normal distribution describing the joint distribution of the two standard
normal variates zt and wt , which have correlation ρ.

Note that the correlations between zt and w′
t are the same as between zt and wt ; w′

T and wT

essentially refer to the same random variable QT , and differ only in their means, which does
not affect the correlations.

Using the results of equations (A1.20) and (A1.21), this last integral is evaluated as follows:

Coutside
u−i = A

{
S0 e−qT N[(σ

√
T − Z X )] − X e−rT N[−Z X ]

− (S0 e−qT N2[−(σ
√

T − Z X ),−(ρ σ
√

T − W ′
X ); ρ]−X e−rT N2[−Z X ,−W ′

K ; ρ]
)}

+ (S0 e−qT N2[−(σ
√

T − Z X ),−(ρ σ
√

T − W ′
X ); ρ] − X e−rT N2[−Z X ,−WK ; ρ]

)
(16.3)

16.3 PARTIAL BARRIER OPTIONS

In the foregoing it was always assumed that a barrier is permanent. However, the barrier could
be switched on and off throughout the life of the option. Such a pricing problem is usually
handled numerically, but the simplest case can be solved analytically using the techniques of
the last section (Heynen and Kat, 1994b).

This is an option on a single underlying stock at two different times, as described in
Chapter 14. The specific case we consider is an up-and-in call of maturity T, which knocks in
if the barrier is crossed before time τ , i.e. the barrier is switched off at time τ . Its value can be
written analytically as

Cpartial
u−i = e−rT

{∫ +∞

ST =0

∫ +∞

Sτ =0
(ST − X )+Fjo int dSτ dST

Fjo int is the joint probability distribution of two random variables Sτ and ST , where Sτ is subject
to an absorbing barrier. This problem is almost precisely the same as the outside barrier option
problem solved in the last section. The formula given in equation (16.3) can therefore be
applied directly, with the following modifications:

� Q0 → S0, σQ → σ and m Q → m.
� T → τ in the formulas for w′

K and wK .
� The correlation between Sτ and ST is shown in Appendix A.1(vi) to be ρ = √

τ/T .
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16.4 LOOKBACK OPTIONS

16.4 LOOKBACK OPTIONS

These are probably the most discussed and least used of the standard exotic options. The
problem is that on the one hand they have immense intuitive appeal and pricing presents some
interesting intellectual challenges; but on the other hand they are so expensive that no-one
wants to buy them. However, this book would not be complete without an explanation of how
to price them (Goldman et al., 1979).

0S

maxS

minS
T

X TS

Figure 16.3 Notation for lookbacks

(i) Floating Strike Lookbacks: Lookback options are quoted in two ways. The most common
way is with a floating strike, where the payoffs are defined as follows:

Payoff of Cfl str = (ST − Smin)
Payoff of Pfl str = (Smax − ST )

The lookback call gives the holder the right to buy stock at maturity at the lowest price achieved
by the stock over the life of the option. Similarly, the lookback put allows the holder to sell
stock at the highest price achieved.

The form of the payoff is unusual in that it does not involve an expression of the form
max[0, . . .], since (ST − Smin) can never be negative; it has therefore been suggested that this
is not really an option at all, although this is largely a matter of semantics. However, it does
make the pricing formula straightforward to write out: risk neutrality gives

Cfl str = e−rT {E〈ST 〉 − E〈Smin〉}
= e−rT {F0T − vmin} (16.4)

Pfl str = e−rT {vmax − F0T }
where F0T is the forward price.

(ii) Fixed Strike Lookbacks: As the name implies, these options have a fixed strike X. Referring
to Figure 16.3, the payoffs of the fixed strike call and put are given by

Payoff of Cfix str = max[0, Smax − X ]

Payoff of Pfix str = max[0, X − Smin]

These are sometimes referred to as lookforward options. They give the option holder the right
to exercise not at the final stock price, but at the most advantageous price over the life of
the option. The payoffs look more like normal option payoffs, containg the familiar “max”
function. However, in practice, the payoff can be further simplified, since the options are usually
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quoted at-the-money, i.e. with X = S0. This implies that X ≤ Smax or Smin ≤ X , so that

Cfix str = e−rT {E〈Smax〉 − X}
= e−rT {vmax − X} (16.5)

Pfix str = e−rT {X − vmin}
(iii) Distributions of Maximum and Minimum: The prices of both floating and fixed strike lookback

options depend on the quantities vmin and vmax, which are defined in the last two subsections.
It is shown in Appendix A.8(viii) that the distribution functions for xmax = ln(Smax/S0) and
xmin = ln(Smin/S0) are

Fmax(xmax, T ) = 2

σ
√

2πT
exp

[
− 1

2σ 2T
(xmax − mT )2

]

−2m

σ 2
exp

(
+ 2mxmax

σ 2

)
N

[
− 1

σ
√

T
(xmax + mT )

]
(16.6)

Fmin(xmin, T ) = 2

σ
√

2πT
exp

[
− 1

2σ 2T
(xmin − mT )2

]

+2m

σ 2
exp

(
+2mxmax

σ 2

)
N

[
+ 1

σ
√

T
(xmin + mT )

]

t

0S

maxS

H ; previous max

path A

path B

max
path A

path B

t = 0

S

Figure 16.4 Previous maximum

(iv) When we derive the formula for the price of an option, we do not usually have to concern
ourselves with what happened in the past: if a call option was issued for an original maturity
of 3 months, its price after 2 months is exactly the same as the price of a newly issued 1-month
option. However, the pricing of a lookback is a little more difficult: after 2 months, the maximum
or minimum value of St for the whole period may already have been achieved.

Let us assume that a previous maximum H has been established and we wish to find the
value of vmax at time t = 0. Consider the two paths shown in Figure 16.4: path A establishes a
new maximum at Smax while path B does not make it so that the established maximum remains
at H. This generalized definition, accommodating a previous maximum, is expressed in the
general definition

vmax = E〈max[H, Smax]〉 = H P〈Smax < H〉 + E〈Smax

∣∣ H < Smax〉
194



16.5 BARRIER OPTIONS AND TREES

or

vmax = H
∫ H

0
Fmax dSmax +

∫ ∞

H
Smax Fmax dSmax

There is an analogous expression for vmin in terms of a previously established minimum L.

(v) Expressions for vmax and vmin can be obtained by using equations (16.6) for Fmax and Fmin,
making the substitution Smax = S0 exmax . The resulting integrals are performed using the results
of Appendix A.1(v), item (E); the algebra is straightforward but very tedious. The expressions
can be combined to give the generalized formula

vmax / min = H

{
N[ψ Z K ] − σ 2

2(r − q)
exp

(
2mb

σ 2

)
N[ψ Z ′

K ]

}

+F0T

{
1 + σ 2

2(r − q)
N[−ψ(Z K − σ

√
T )]

}
(16.7)

b = ln K/S0; Z K = (ln K/S0 − mT )

σ
√

T
; Z ′

K = Z K − 2b

for max: K = H, ψ = +1; for min: K = L , ψ = −1

(vi) Strike Bonus: Using equation (16.7) to obtain an expression for vmin, substituting this into
equation (16.4) and rationalizing gives (Garman, 1989)

Cfl str = e−rT {F0T N[−(ZL − σ 2T )] − L N[−ZL ]}

+ σ 2S0

2(r − q)

{
e−rT exp

[
2(r − q)b

σ 2

]
N[−Z ′

L ] + e−qT N[ZL − σ 2T ]

}
(16.8)

The first term is simply the Black Scholes formula for a call option with strike X = L , the
previously achieved minimum. At t = 0 we consider two possibilities:

� No new minimums are formed below L before the maturity of the option. The payoff of Cfl str

is then equal to the payoff of C(S0, L , T ), i.e. max[0, ST − L].
� A new minimum is established at Smin which is below L. The payoff of the option is then

max[0, ST − Smin].

Comparing these two possible outcomes, it is clear that the second term in equation (16.8)
prices an option to reset the strike price of a call option from L down to the lowest value
achieved by St before maturity. This option is called the strike bonus.

16.5 BARRIER OPTIONS AND TREES

(i) Binomial Model (Jarrow–Rudd): Binomial and trinomial trees are a standard way of solving
barrier option pricing problems which are not soluble analytically, such as American barrier
options. However, these methods do display some special features which will be illustrated
with the example of a European knock-out call Cu−o(X < K ). The example uses S0 = 100,
X = 110, K = 150, r = 10%, q = 4%, σ = 20%, T = 1 year. This is similar to the example
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16 Barriers: Advanced Options

examined in some detail in Section 7.3(v) and again in Section 8.6, except for the existence
of a knock-out barrier. In the previous investigations we examined the variation of the values
obtained from the binomial model, as a function of the number of time steps.

In order to accommodate the knock-out feature in a binomial tree, we simply set the option
value equal to zero at each node for which the stock price is outside the barrier. Consider
the above knock-out option, priced on a three-step binomial tree. Using the Jarrow–Rudd
discretization, there is no node with a stock price higher than 150; therefore there is no node at
which we would set the stock price equal to zero. We are therefore unable to price this option –
or alternatively put, this model gives the same value for a barrier at K = 150 and for K = ∞.

K=150

2.21

112.24

100.00100.00

125.98

141.40

89.09

79.38

112.24

89.09
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31.40
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0

0

17.92

1.21

0
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100.00
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100.00
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0

0.96

1.21

0
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K=130

K=140
125.98

0

0

Figure 16.5 Knock-out barriers in binomial trees

If we now look at the same model with the barrier at K = 140 as in the second diagram of
Figure 16.5, we see how the tree is modified, giving a very different value for the option. But
the tree would give exactly the same answer for K = 130; the barrier would have to be below
K = 125.98 for the tree to be modified any further. In general, the value of a knock-out option
is a step function of the barrier level, with a jump each time the barrier crosses a line of nodes.

(ii) Price vs. Number of Steps: Figure 16.6 shows the value of our knock-out call option plotted
against the number of steps in the binomial tree; the analytical value of this option is 3.77. It is
instructive to compare this graph with Figure 7.11 for a similar option but without a knock-out
barrier. The European option shows the characteristic oscillations which are gradually damped
away; by the time we reach about 300/400 steps (not shown), the answer obtained is stable
enough for commercial purposes. The knock-out option on the other hand shows three different
features of interest (Boyle and Lau, 1994):
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Figure 16.6 Up-and-out knock-out call price vs. number of binomial steps (Jarrow–Rudd discretization)

� The graph continues its relentless sawtooth pattern long after the 1500 steps which we have
shown. Convergence to the analytical answer is difficult to achieve.

� However, within about 150 steps, we find the bottom of the zig-zags within 1% of the
analytical answer; certainly, within 300/400 steps, the envelope of low points gives an
almost perfect answer.

� The answers converge to the theoretical answer from above, i.e. apart from a few outliers,
the tree always gives answers greater than the analytical value.

We start by turning our attention to the first two features.

Row N

x    x    x    x    x    x

o    o    o    o    o    o

o    o    o    o    o    o

x    x    x    x    x    x

o    o    o    o    o    o

x    x    x    x    x    xK

K Row N

1 extra binomial step

Figure 16.7 Effect of increasing number of
binomial steps

In subsection (i) we saw that a knock-out op-
tion value calculated with a binomial tree is a
step function of the barrier level. This same ef-
fect causes oscillations in the calculated value of
a knock-out option plotted against the number
of steps. If we use the Jarrow–Rudd discretiza-
tion with N time steps, each proportional up-jump
is given by u = eσ

√
δt = eσ

√
T/N . Therefore as N

increases, the spacing between adjacent rows of
nodes decreases; the rows of nodes become pro-
gressively compressed together and at a certain
point an entire row of nodes crosses the barrier.
At this point there is a jump in the value of the
option calculated by the tree.

(iii) As the number of steps N is increased, we would
expect the most accurate binomial calculation to
occur when a row is just above the knock-out barrier; the option value at these nodes is put at
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zero. Increasing the number of steps by one would then push the row down through the barrier
and change this row of zeros into positive numbers (see Figure 16.7).

Let Nc be a critical number of steps such that row n of nodes in the binomial tree lies just
above K, i.e. S0 enσ

√
T/Nc is greater than K; but S0 enσ

√
T/(Nc+1) is less than K. We find Nc from

S0 enσ
√

T/Nc < K < S0 enσ
√

T/(Nc+1) or Nc = round down

(
n2σ 2T

(ln K/S0)2

)

where “round down” means round down to the nearest integer. Note: It is important to be
accurate at this point since Nc will give a best answer while Nc + 1 gives a worst answer.

Figure 16.8 is just a blown up detail taken from Figure 16.6. Use of the formula just given
gives the following results:

n Nc

28 190
29 204
30 218

which correspond precisely to the jumps in the diagram. The rippling effect of the option
values between jumps is the residual effect of the oscillations always observed in binomial
calculations.
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Figure 16.8 Knock-out option price vs. steps

(iv) Alternative Discretizations: The above sawtooth effect is particularly pronounced when we
use the Jarrow–Rudd discretization, since all nodes lie along horizontal levels: entire rows
of nodes then cross the barrier at once as the number of time steps is increased. If we use a
discretization which does not have horizontal rows of nodes, then only a few grid points cross
the barrier each time the number of steps is increased. Figure 16.9 is analogous to Figure 16.6,
but using the Cox–Ross–Rubinstein discretization. It continues to display the sawtooth effect,
but with much reduced amplitude; the envelope of the low points no longer coincides with the
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analytical value for the option. The smooth curve which seems to run through the middle of
the zig-zags in the diagram is explained later.

Number of Steps

?3.77 1%?3.77 1%

3.50

3.70

3.90

4.10

4.30

4.50

4.70

4.90
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±3.77 1%

0 200 400 600 800 1000 1200 1400 1600

Figure 16.9 A: Up-and-out knock-out call price vs. number of binomial steps (Cox–Ross–Rubinstein
discretization); B: Discrete barrier correction

(v) The first reaction to the smaller oscillations of Figure 16.9 is to avoid discretizations with
horizontal rows of nodes. However, when dealing with variable volatility or interest rates, it
is generally necessary to use trinomial trees. There is nothing to say that these must have
horizontal nodes, but they are certainly easier to program if they do.

An alternative way of overcoming the zig-zag problem, while still retaining nodes in hori-
zontal rows, is to use interpolation. This method starts with a fixed number of steps and regards
the barrier K as a variable. Referring to the diagram of subsection (iii) above, it is clear that
the tree calculation will yield the same answer for K anywhere between two neighboring rows
of nodes; it is only when K crosses a row that the answer changes. We saw previously that
if K is adjacent to (but below) a row of nodes, then we get a “best answer” from a tree. This
interpolation method calls for us to calculate two “best answers”, for K just below two neigh-
boring rows; a “best solution” for K between these values is an interpolation between the two
best answers.

(vi) Discrete Sampling: The consideration of binomial price vs. number of steps really involves
two quite separate issues. So far in this section, we have focused on issues connected with the
stability and geometry of the tree; but there is an even more fundamental issue to consider. Is
the option being priced by the binomial tree really the same option that was priced in the last
section, using analytical methods? It is now rare to find barrier options which knock in or out
if ever the barrier is crossed before maturity: there have been too many disputes about whether
the barrier really was crossed and whether a bit of market manipulation helped it over. Barrier
options contracts now specify a precise time each day (or week) when the market is observed
to see if the price is on the other side of the barrier, i.e. the barrier performance is discretely
monitored. It is of course possible (indeed very probable) that in our example of an up-and-in
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put, the stock price rises above the barrier only to fall back again before the next discrete
monitoring point. A discretely monitored up-and-out call should always be more valuable than
one which is continuously monitored. Moreover, the less frequently it is monitored, the more
expensive it should be.

The use of a tree to price an option implicitly forces the assumption that the number of
monitoring points is equal to the number of time steps in the tree. The trouble is that it is
very tricky to separate those effects that are due to discrete monitoring from those which stem
from the geometry of the tree. A number of methods have been proposed for estimating the
difference between the values of a discretely and a continuously monitored barrier option. The
easiest to apply (while at the same time enjoying some theoretical justification) was introduced
by Cheuk and Vorst (1996). This shows that a barrier option monitored at equally spaced points
has the same value as the corresponding continuously monitored option, but with the barrier
shifted from K to a new level K e±βσ

√
T/N where β = 0.5826 and T/N is the monitoring

frequency. The volatility is σ and the ± sign depends on the context: it would be + in our
up-and-out call example. This approximation holds fairly well over a wide range and is the
heavy curve in Figure 16.9.

Finally, the general form of this correction explains one point which may have puzzled the
reader: the binomial results of Figure 16.6 refer to a series of discretely monitored barrier
options, notwithstanding the zig-zag errors which have already been discussed. How come
then, that the lower envelope of the oscillating results corresponds so closely to the theoretical
value of a continuously monitored barrier option? From the analysis of subsection (iii) it
is clear that the difference between a “best answer” and a “worst answer” is the same as
the difference caused by moving the barrier a distance equal to the separation of successive
horizontal rows of nodes, i.e. moving from K to K eσ

√
T/N . Moving the barrier half this distance

would equate to a move from K to K e0.5 σ
√

T/N ; but this is remarkably close to a move from
K to K e0.5826 σ

√
T/N which is prescribed by Cheuk and Vorst for taking us from a discretely

monitored to a continuously monitored barrier option. Therefore, if the center of the sawtoothed
pattern in Figure 16.6 is a best estimate of the value of a discretely monitored up-and-out call
(Cheuk and Vorst line), then the envelope of the bottom of the sawtooth will approximately
give the continuously monitored value.
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Asian Options

17.1 INTRODUCTION

(i) Consider a company which is exporting goods continuously rather than in large chunks. Equal
payments are received daily in foreign currency and the exporter decides to hedge these for
the next month by buying put options. Compare the following two strategies: (i) the exporter
buys a set of put options with strike X, maturing on each day of the month; or (ii) he buys a
put option on the average exchange rate over the month with payoff max[0, X − Av].

Clearly, the payoff of package (i) is greater than that of package (ii): simply imagine two
successive days on which the exchange rates are X − 10 and X + 10. The combined payoff
for two separate puts would be 10 while the payoff for the put on the average price is zero.
An exporter is more likely to be interested in the average exchange rate rather than the rate on
individual daily payments. He would therefore execute the cheaper strategy (ii) above.

Options in which the underlying asset is an average price are known as Asian options. They
are of most interest in the foreign exchange markets, although they do appear elsewhere, e.g.
savings products whose upside return is related to the average of a stock index. In the following,
we will continue to use the vernacular of equity derivatives.

(ii) Average Price and Average Strike: There are two families of Asian options to consider:

� Average price options with payoffs for call and put of

max[0, AvT − X ] and max[0, X − AvT ]

� Average strike options with payoffs

max[0, ST − AvT ] and max[0, AvT − ST ]

Average price options are more intuitively interesting and more common, although the two
types are obviously closely related. Both will be examined in this chapter.

(iii) In-progress and Deferred Averaging: The underlying “asset” in an Asian option is AvT , the
average price up to maturity at time T. This is not a tangible asset that can be delivered at
the expiry of an option, so these options are cash settled, i.e. an amount of cash equal to the
mathematical expression for the payoff is delivered at maturity.

It very often happens that the averaging period does not run from “now” to time T. Two
cases need to be considered:

� We may be pricing an option that started at some time τ in the past and the averaging may
already have started.

� The option may be only partly Asian, i.e. the averaging does not start until some time τ in
the future.

(iv) Definition of Averages: The average of a set of prices is most simply defined as AN =
(N + 1)−1∑N

n=0 Sn . If the averaging does not start until n = ν (deferred averaging of the last
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subsection, then AN = (N − ν + 1)−1∑N
n=ν Sn . Averaging could be calculated daily, weekly

or whatever is agreed. This is the arithmetic average and is used for most option contracts. The
various Sn are lognormally distributed, but there is no simple way of describing the distribution
of AN . Note that by convention, the average includes the price on the first day of averaging,
e.g. it would include today’s price S0 if averaging started now.

An alternative type of average, defined by G N = {S0 × S1 × · · · × SN }1/(N+1), is called
the geometric average. For deferred start averaging, G N = {Sν × Sν+1 × · · · × SN }1/(N−ν+1).
Taking logarithms of both sides gives

gN = ln
G N

S0
= 1

N + 1

N∑
n=0

ln Sn = 1

N + 1

N∑
n=0

xn

The xn are normally distributed (see Section 3.1) and we know that the sum of normal random
variables is itself normally distributed; the distribution of gN is therefore normal.

(v) Geometric vs. Arithmetic Average: We have the unfortunate situation where options
in the market are all written on the arithmetic average while pricing is only easy for
the geometric average. Perhaps there is a simple bridge to get from one to the other?

On the right is a set of 20 daily prices of a commodity with a volatility of about 22%.
The arithmetic and geometric averages are A20 = 103.95 and G20 = 103.92, which
are surprisingly close given the very different mathematical forms of the two averages.
Given the simplifying assumptions of option theory and the uncertainty surrounding
volatility, one is tempted to say that these results are close enough to be taken as being
the same.

Could these two averages have come out close by accident? There is a mathematical
theorem which states that G N ≤ AN always; equality occurs if all the Sn are identical.
The commodity prices in our list are close in size so the averages are close. Now
consider two series in which the numbers being averaged are much more variable, or
equivalently stated, prices which are much more volatile:

1

20
{1 + 2 + · · · + 20} = 10.5; {1 × 2 × · · · × 20} 1

20 = 8.3

100
102

99
100
102
101
103
104
103
104
107
106
107
105
104
107
108
106
107
104

Even in this case, which is more extreme than price series generally encountered in finance,
the difference is only about 25%. It is frustrating to have the arithmetic and geometric results
so close, and we describe below how theoreticians have been prompted to devise schemes in
which an arithmetic option is regarded as a geometric option plus a correction factor.

(vi) Put–Call Parity: Before turning to various explicit models, it is worth pointing out that put–call
parity works for European Asian options – strange terminology, but meaning an average option
with no payout before final maturity permitted. For either a geometric or an arithmetic average
price, we may write

Cav(T ) − Pav(T ) = AvN − X

Taking risk-neutral expectations and present valuing gives

Cav(0) − Pav(0) = e−rT {E[AvN ] − X}
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which gives the price of an Asian put option in terms of the price of the corresponding call
option. Expressions for E〈AvN 〉 with different averaging periods can be calculated exactly for
both geometric and arithmetic averages. This result means that we can focus on call options,
as the put price follows immediately from the above formula.

17.2 GEOMETRIC AVERAGE PRICE OPTIONS

(i) Use of Black Scholes Model for Geometric Average Options: The notation of Chapter 3 is
used and extended for simple or deferred geometric averaging as follows:

rn = ln Sn
Sn−1

E[rn] = mδT var[rn] = σ 2 δT

Underlying price: Sn Geometric average price: Gn

xn = ln
Sn

S0
gn = ln

Gn

G0
E[xn] = mT E[gn] = mgT
var[xn] = σ 2T var[gn] = σ 2

g T

E[Sn] = S0 e(m+ 1
2 σ 2)T = F0T E[Gn] = G0 e(mg+ 1

2 σ 2
g )T

gn is normally distributed so we can take over the whole barrage of the Black Scholes model
to price geometric average price options, using the following substitutions:

� SN → G N ; xN → gN
� σ 2 → σ 2

g (17.1)
� µrisk neutral = (r − q) → µg = mg + 1

2σ 2
g (17.2)

Remember, the term (r − q) only appears in the Black Scholes model as an input into the calcu-
lation of the forward rate F0T → S0 e(r−q)T ; so equation (17.2) is equivalent to the substitution
F0T → S0 e(mg+ 1

2 σ 2
g )T when using the Black Scholes model. Alternatively, we can describe the

substitutions in the Black Scholes model as

� S0 → S0; σ 2 → σ 2
g ; q → qg = r − mg − 1

2σ 2
g (17.3)

It just remains to work out expressions for mg and σ 2
g . The form of these depends on the precise

averaging period being considered and will be given in the next three subsections.

(ii) Simple Averaging: We first consider geometric averaging from now until maturity, i.e. neither
deferred nor in progress. Using previous definitions in this chapter:

G N

S0
= 1

S0
{S0 × S1 × · · · × SN } 1

N+1 =
{

S0

S0
× S1

S0
× · · · × SN

S0

} 1
N+1

Take logarithms of both sides:

gN = 1

N + 1

N∑
n=0

xn (17.4)

Using the analysis and notation of Section 3.1(ii) we can further write

xn = ln
Sn

S0
= ln

S1

S0
× S2

S1
× · · · × Sn

Sn−1
= r1 + r2 + · · · + rn
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17 Asian Options

All the ri are independently and identically distributed with E[ri ] = mδT and var[ri ] = σ 2δT .
When taking expectations or variances of xn we can therefore simply write each of the ri as r
and put xn → nr .

E[gN ] = 1

N + 1

N∑
n=0

E[xn] = 1

N + 1

N∑
n=0

E[r1 + r2 + · · · + rn]

= 1

N + 1

N∑
n=0

E[nr ] = mδT

N + 1

N∑
n=0

n

And similarly

var[gN ] = 1

(N + 1)2

N∑
n=0

var[xn] = 1

(N + 1)2

N∑
n=0

var[nr ] = σ 2δT

(N + 1)2

N∑
n=0

n2

The following two standard results of elementary algebra

N∑
n=1

n = 1

2
N (N + 1);

N∑
n=1

n2 = 1

6
N (N + 1)(2N + 1)

are used to give

mgT = E[gN ] = 1
2 m NδT = 1

2 mT

σ 2
g T = var[gN ] = σ 2 NδT

3

(2N + 1)

(2N + 2)
= σ 2T

3

(2N + 1)

(2N + 2)
(17.5)

It is interesting to compare these last two results with the analogous results for the logarithm
of the stock price xN [Section 3.1(ii)]:

� E[xN ] = mT while E[gN ] = 1
2 mT . It is no surprise that the expected growth of the average

is half the expected growth of the underlying.
� limN→∞ var[gN ] = σ 2T /3. This is the “square root of three” rule of thumb for roughly

estimating the value of an Asian option from the Black Scholes model by dividing the
volatility by

√
3, which has long been used by traders.

(iii) Deferred Start Averaging: The results of the last subsection need to be adapted if the averaging
period is not from “now” to the maturity of the option. We assume that deferred start averaging
begins ν time steps from now. Equation (17.4) becomes

gN = 1

N − ν + 1

N∑
n=ν

xn

Using the same analysis as before, we can write (for n ≥ ν)

xn = ln
Sn

S0
= ln

Sν

S0
× Sν+1

Sν

× · · · × Sn

Sn−1
= xν + rν+1 + rν+2 + · · · + rn
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so that

E[gN ] = 1

N − ν + 1
E

[
N∑

n=ν

{xν + rν+1 + r2 + · · · + rn}
]

= E[xν] + 1

N − ν + 1

N∑
n=ν+1

E[(n − ν)r ]

Use E[xν] = E[νr ] = νmδT and
∑N

n=ν+1(n − ν) =∑N−ν
n=1 n in the last equation to give

E[gN ] = νmδT + mδT

N − ν + 1

1

2
(N − ν)(N − ν + 1) = 1

2
mδT (N + ν) (17.6)

The corresponding expression for variance is given by

var[gN ] = var[xν] + σ 2δT

(N − ν + 1)2

N−ν∑
n=1

n2 = σ 2δT

{
ν + 1

6

(N − ν)(2N − 2ν + 1)

(N − ν + 1)

}
(17.7)

In continuous time, with large N and setting N δT → T and νδT → τ , the last two equations
can be written

E[gN ] = 1

2
m(T + τ ); var[gN ] = σ 2

3

{
T + 2τ − T − τ

2(N − ν + 1)

}
(17.8)

(iv) In-progress Averaging: At some point in its life, every Asian option becomes an in-progress
deal. The average then needs to be replaced by the average from now to maturity plus a
non-stochastic past-average part. The adaption is straightforward:

G N = {S−ν × S−ν+1 × · · · × S0 × · · · × SN } 1
N+ν+1 = Ḡ

ν
N+ν+1 {S0 × S1 × · · · × SN } 1

N+ν+1

where Ḡ = {S−ν×S−ν+1 × · · · × S−1}1/ν is the geometric mean of those past stock prices which
have already been achieved. Using the methods of the last two subparagraphs, we have

gN = ν

N + ν + 1
ḡ + 1

N + ν + 1

N∑
n=0

xn

Using the results of subsection (ii) above immediately gives

mgT = E[gN ] = ν

N + ν + 1
ḡ + N + 1

N + ν + 1

1

2
mT (17.9)

σ 2
g T = var[gN ] = σ 2T

6

(N + 1)(2N + 1)

(N + ν + 1)2
(17.10)

In continuous time these are written

mgT = τ ḡ + 1
2 mT

T + τ
; σ 2

g T = σ 2T

3

{
T

T + τ

}2

(17.11)
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17.3 GEOMETRIC AVERAGE STRIKE OPTIONS

The payoff of a call option of this type is max[0, ST − GT ]; but this is an option to exchange
one lognormal asset for another, and can be priced by Margrabe’s formula [equations (12.1)]
using the substitutions of equation (17.3):

CGAS = S0 e−qT N[d1] − S0 e−qg T N[d2] (17.12)

d1 = 1

�g

√
T

{
ln

e−qT

e−qg T
+ 1

2
�2

g T

}
; d2 = d1 − �g

√
T

�2
g T = σ 2T + σ 2

g T − 2 cov[xT , gT ]; qg = r − mg − 1
2σ 2

g

Expressions for mg and σ 2
g corresponding to different types of averaging were derived in the

last section. Now we just need to derive an expression for the covariance term.

(i) Deferred Start Averaging: Recall the results from Section 17.2(iii):

gN = 1

N − ν + 1

N∑
n=ν

xn; xn = r1 + r2 + · · · + rν + · · · + rn

and

cov[ri , r j ] =
{

σ 2δT i = j
0 i = j

to give cov[xN , xn] = nσ 2δT (n ≤ N ). Then

cov[xN , gN ] = 1

N − ν + 1
cov

[
xN ,

N∑
n=ν

xn

]
= σ 2δT

N − ν + 1

N∑
n=ν

n = σ 2δT
N + ν

2

This last may be written σ 2(T + τ )/2 in continuous time, and using equation (17.8) for σ 2
g

gives

�2
g = σ 2

3

T − τ

T

(ii ) In-progress Averaging: Using the notation of Section 17.2(iv), cov〈ḡ, xN 〉 = 0 so that

cov[gN , xN ] = 1

N + ν + 1
cov

[
N∑

n=0

xn, xN

]
= σ 2δT

N − ν + 1

N∑
n=0

n = σ 2δT
N (N + 1)

2(N + ν + 1)

Once again, the last expression can be written as σ 2T 2/2(T + τ ) which yields the slightly
more complicated result

�2
g = σ 2

{
T 2

3(T + τ )2
+ τ

T + τ

}

17.4 ARITHMETIC AVERAGE OPTIONS: LOGNORMAL
SOLUTIONS

(i) The analysis of the last two sections on geometric Asian options is satisfyingly elegant; but
Asian options encountered in the market are arithmetic, and there are no simple Black Scholes
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17.4 ARITHMETIC AVERAGE OPTIONS: LOGNORMAL SOLUTIONS

type solutions for these. It was observed in Section 17.1(v) that arithmetic and geometric
averages are surprisingly close in value, so that a natural approach is to seek an arithmetic
solution expressed as a geometric solution plus a correction term.

The arithmetic average AN has the following properties:

� AN is the sum of a set of correlated, lognormally distributed random variables SN , and does
not have a simply defined distribution.

� Although the distribution of AN is ill-defined, exact expressions can be derived for the
individual moments, i.e. E[Aλ

N ] with integer λ. Expressions for these moments in terms of
observed or calculable parameters (volatility of the underlying stock, number of averaging
points, risk-free rate, etc.) are given in Section A.13 of the Appendix.

� It has been observed in several fields of technology that the sum of lognormally distributed
variables can be approximated by a lognormal distribution, under a fairly wide range of
conditions.

These observations lead to various approximation methods. There seems to be a bewildering
array of these, but the most important ones are closely related. We have included what we
consider the most important approaches and a route map of the subject follows.

1. Monte Carlo: The arithmetic average option problem is ideally suited for solution by
the Monte Carlo methods using the geometric average price as the control variate [see
Section 10.4(iii)]. These can achieve any degree of accuracy we please just by extend-
ing calculation times. They are therefore ideal tools for testing or calibrating some faster
algorithm to be used for real-life situations.

2. Exactly Lognormal Models: All methods explained in the next two sections exploit the
fact that the arithmetic average is at least approximately lognormal. If we assume exact
lognormality with the defining parameters mg and σ 2

g as defined in the last section, we
merely reproduce the geometric average results.

� Vorst’s method assumes the distribution of An is exactly lognormal, but applies a correc-
tion term E[An] − E[Gn] to the strike price.

� The simple modified geometric also assumes that the distribution is exactly lognormal;
it assumes that the variance is the same as for the geometric average, but it assumes that
the mean ma equals the exact mean of the arithmetic average.

� Levy’s correction goes one step further than (4) by assuming that both the variance and
the mean of the lognormal distribution assumed for An are equal to the calculated variance
and mean of the arithmetic average. Note that the mean and variance are now exactly
correct, although the assumption of lognormality may be in error.

3. Approximately Lognormal Models: In Section 17.5, we drop the assumption of exact log-
normality and merely assume the distribution of An can be approximated by a lognormal dis-
tribution. Correction terms to the results of the present section (particularly Levy’s method)
are obtained in terms of an infinite but diminishing series of observable or calculable terms.

4. Geometric Conditioning: In Section 17.6, we examine a very successful method due to
Curran, which makes no explicit assumptions about the form of the distribution of AN . It
is more awkward to implement than a simple formula, but it is probably the recommended
approach at present, giving very accurate answers over a wide range.
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(ii) Vorst’s Method: (Vorst, 1992). Let CG and CA be the values of a geometric and an arith-
metic average price call option. Given that the payoffs of these options at maturity are
CA(T, X ) = max[0, AN − X ] and CG(T, X ) = max[0, G N − X ], and also given the general
result mentioned in Section 7.1 that G N ≤ AN , we have a lower bound for CA(0, X ):

CG(0, X ) ≤ CA(0, X )

This is fairly obvious, but Vorst has also established an upper bound. If G N ≤ AN then we can
write

max[0, AN − X ] − max[0, G N − X ] =



0: AN < X ; G N < X
AN − X: AN > X ; G N < X
AN − G N: AN > X ; G N > X

(17.13)

Note that a fourth possible combination on the right-hand side (AN < X ; G N > X ) is not
included because G N ≤ AN . Two interesting results are derived from equation (17.13):

NA - X

max [0, AN - X]

XX - dN

AN - X

GN

Figure 17.1 Vorst approximation

1. The equation can be summarized as

max[0, AN − X ] − max[0, G N − X ] ≤ AN − G N

Taking present values of risk-neutral expectations
gives

CA(0, X ) ≤ CG(0, X ) + e−rT E〈AN − G N 〉
This gives an upper bound on the value of CA(0, X )
in terms of calculable quantities: CG(0, X ) is the
subject of Section 17.2; the lead-in to equation
(17.3) shows that E[G N ] → S0 e(mg+ 1

2 σ 2
g )T ; E[AN ]

is derived in Appendix A.13.
2. Equation (17.13) can be manipulated to a slightly different form:

max[0, AN − X ] =



0: AN < X ; G N < X
AN − X: AN > X ; G N < X
G N − (X − δN ): AN > X ; G N > X

where δN = AN − G N . This payoff is illustrated in Figure 17.1. Recalling that δN is always
small, the stepped part of the payoff might be approximated by the diagonal dotted line,
prompting the following (Vorst’s) approximation for an arithmetic average call option:

CA(0, X ) ≈ CG(0, Xδ); Xδ = X − E〈δN 〉 (17.14)

(iii) Simple Modified Geometric: Let us assume that AN is lognormally distributed with the
same volatility as G N , i.e. σg . We can write this as aN = ln(AN /S0) ∼ N (ma T, σ 2

g T ), where
aN = ln(AN /S0). It follows that

E[AN ] = S0 e(ma+ 1
2 σ 2

g )T or ma T = ln
E[AN ]

S0
− 1

2
σ 2

g (17.15)

Expressions for σ 2
g under various averaging scenarios were derived in Section 17.2. The corre-

sponding expressions for E[AN ] are derived in Appendix A.13. The net effect of this approach is

208



17.5 ARITHMETIC AVERAGE OPTIONS: EDGEWORTH EXPANSION

to use the geometric average model but substitute the known risk-neutral drift of the arithmetic
average.

(iv) Levy Correction: (Levy, 1992). This is a logical step forward from the last sub section. This time
we assume that aN ∼ N (ma T, σ 2

a T ), i.e. the distribution of the arithmetic mean is lognormal;
but this time we calculate σ 2

a from first principles rather than just approximating it by σ 2
g .

Equation (A1.8) of the Appendix shows that E[Aλ
N ] = Sλ

0 e(λma+ 1
2 λ2σ 2

a )T where λ is an integer.
Therefore we may write (

ma + 1
2σ 2

a

)
T = ln E[AN ] − ln S0(

ma + σ 2
a

)
T = 1

2

{
ln E[A2

N ] − ln S2
0

}
These are solved for ma and σ 2

a using the expressions for the moments of AN given by equations
(A13.11)–(A13.13). The value of an arithmetic average price call option can then be written

CLevy
A = e−r t {E〈AN 〉N[d1] − X N[d2]} (17.16)

d1 = 1

σa

√
T

{
ln

E〈An〉
X

+ 1

2
σ 2

a T

}
; d2 = d1 − σa

√
T

(v) Arithmetic Average Strike Options: Using Levy’s model, we assume that the arithmetic average
is lognormally distributed, so that the analysis is very similar to that given for geometric average
strike options in Section 17.3. Again, the price of this option is given by Margrabe’s formula:

CAAS = S0 e−qt N[d1] − S0 e−qa T N[d2] (17.17)

d1 = 1

�a

√
T

{
ln

e−qT

e−qa T
+ 1

2
�2

g T

}
; d2 = d1 − �a

√
T

�2
a T = σ 2T + σ 2

a T − 2 cov[ln ST , ln AT ]; qa = r − ma − 1
2σ 2

a

The term cov[ln ST , ln AN ] can be calculated from equation (A1.23) which can be written as
follows:

E[AN ST ] = E[AN ]E[ST ]ecov[ln ST,ln AN]T

A formula for each of the expected values is given in Appendix A.13.

17.5 ARITHMETIC AVERAGE OPTIONS: EDGEWORTH
EXPANSION

(i) It is well known that a function can be expressed by a Maclaurin’s (Taylor’s) expansion as
follows:

f (x + δx) = f (x) +
∞∑

n=1

1

n!

∂n f (x)

∂xn
(δx)n

It is less well known that if a probability density function f (AN ) is approximated by another
distribution l(AN ), then we may write

f (AN ) = l(AN ) +
∞∑

n=1

(−1)n

n!

∂nl(AN )

∂ An
N

En

This is called the Edgeworth expansion and is derived in Appendix A.14.

209



17 Asian Options

We assume that the true distribution of AN has a true density function f (AN ) which is
close to but not identical to the lognormal distribution l(AN ); the analytical form of the latter
is known so that the derivatives can be evaluated explicitly. The terms En are functions only
of the differences between the various cumulants under the true distribution of AN , and the
corresponding cumulants under the lognormal distribution. Furthermore, the cumulants them-
selves are functions only of the moments of AN which may be calculated explicitly for both
the true distribution and for the lognormal distribution. All terms on the right-hand side of the
Edgeworth expansion are therefore calculable in principle.

(ii) We will restrict ourselves to an investigation of the effects of higher moments up to the fourth
term in the Edgeworth expansion:

f (AN ) = l(AN ) − ∂l(AN )

∂ AN
E1 + 1

2!

∂2l(AN )

∂ A2
N

E2 − 1

3!

∂3l(AN )

∂ A3
N

E3 + 1

4!

∂4l(AN )

∂ A4
N

E4

(17.18)

where

δκn = κ f
n − κ1

n

E1 = δκ1; E2 = δκ2 + (δκ1)2; E3 = δκ3 + 3δκ1δκ2 + (δκ1)3

E4 = δκ4 + 4δκ1δκ3 + 3(δκ2)2 + 6(δκ1)2δκ2 + (δκ1)4

The cumulants may be obtained from

κ1 = E[x] = µ; κ2 = E
[
(x − κ1)2

] = σ 2

κ3 = E
[
(x − κ1)3

]
; κ4 = E

[
(x − κ1)4

]− 3κ2
2

The expectations of the powers of AN (moments) corresponding to κ
f

n are given in
Appendix A.13; the moments corresponding to κ1

n (i.e. lognormal) are given by the standard
formula E[Aλ

N ] = Sλ
0 e(λma+ 1

2 λ2σ 2
a )T which was encountered in connection with Levy’s method

in the last section.
When we say that l(AN ) is a lognormal distribution, this is clearly not enough to define the

distribution: we must, for example, specify the mean and variance. Let us select l(AN ) to have
mean and variance equal to the true mean and variance of AN , i.e. set these parameters in the
same way as for the Levy method. Then by definition, κ

f
1 = κ l

1 and κ
f

2 = κ l
2 so that E1 = 0

and E2 = 0.
This is known as the Turnbull–Wakeham method (Turnbull and Wakeham, 1991). The only

remaining inputs which have not been given explicitly are the two partial differentials. But
l(AN ) is just the lognormal probability density function

l(AN ) = 1

AN

√
2πσ 2

a T
exp

[
−1

2

(
ln(AN /S0) − ma T

σa

√
T

)2
]

where ma and σ 2
a are defined in Section 17.4(iv).

(iii) Using this last expansion and equation (A14.8), we can now write for the value of an arithmetic
average

CTW
A = CLevy

A + e−rT

{
− 1

3!

∂l(AN )

∂ AN
E3 + 1

4!

∂2l(AN )

∂ A2
N

E4

}
AN =X

(17.19)
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(iv) In the last subsection, we defined the approximating distribution l(AN ) as having mean and
variance equal to the true mean and variance of AN (always assuming of course that the
underlying St is lognormal). The effect of this is to make the E1 and E2 terms in equation (17.18)
drop out.

We could equally have defined l(AN ) as having skewness and kurtosis equal to the true
skewness and kurtosis of AN . Using definitions of the cumulants given in the last subsection,
we can then derive the corresponding mean and variance for l(AN ). This approach should
give better answers if the true distribution f (AN ) is indeed significantly different from normal
due to a high level of skewness and kurtosis. But the computation significantly increases in
complexity as none of the terms of equation (17.18) now drop out.

17.6 ARITHMETIC AVERAGE OPTIONS: GEOMETRIC
CONDITIONING

This is a different approach from that taken in the last two sections, and gives better results
over a wider range. In fact, the answers come out so close to the Monte Carlo results that it
seems unlikely to be much bettered (Curran, 1994).

(i) Conditioning: The underlying technique on which this method is based relies on the following
principles: suppose x and y are two random variables which are not independent of each other,
and let u(x) be some function of x. The conditioning principle states that

Ex [u(x)] = Ey[Ex [u(x)|y]] (17.20)

We pause to reflect on what this means:

� The left-hand side is easy: we can use the definition Ex [u(x)] = ∫ +∞
−∞ u(x) f (x) dx where

f (x) is the probability density function for the variable x.
� The term Ex [u(x)|y] is the conditional expectation of u(x), conditional on y achieving a

certain value. It may be written Ex [u(x) | y] = ∫ +∞
−∞ u(x) f (x | y) dx where f (x | y) is the

conditional probability density function.
� At first glance, the reader is likely to ask how Ex [u(x)] can depend on some arbitrarily intro-

duced variable y; but we take the expectation (i.e. integrate) over all y so the y-dependence
falls away. Alternatively put:

Ex [u(x)] = Ey[Ex [u(x) | y]] =
∫ +∞

−∞
Ex [u(x) | y] f (y) dy

=
∫ +∞

−∞
dx
∫ +∞

−∞
u(x) f (x | y) f (y) dy (17.21)

� This brings us back to the left-hand side of equation (17.20); in the first bullet point, it was
explained that this was an expectation over all x, but it could equally have been described
as an expectation over all x and y (and over all p and q and r as well for that matter!). This
is written

Ex [u(x)] =
∫ +∞

−∞
dx
∫ +∞

−∞
u(x) f (x, y) dy (17.22)
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Comparing the last two equations gives the general relationship

f (x | y) = f (x, y)

f (y)
(17.23)

(ii) Conditioning is now applied with AN in place of x and G N in place of y:

EAN [max[0, AN − X ]] = EG N [EAN [max[0, AN − X ] | G N ]]

=
∫ +∞

0
EAN [max[0, AN − X ] | G N ]l(G N ) dG N

=
{∫ X

0
+
∫ +∞

X

}
EAN [max[0, AN − X ] | G N ]l(G N ) dG N = C1 + C2

where the last equality defines C1 and C2, and l(G N ) is the lognormal distribution function
which has previously been shown to apply to G N .

(iii) Second Integral (C2): We start with this as it is the easy one. The key observation is that
AN ≥ G N which has already been discussed in this chapter. The integral runs from G N = X
to G N = ∞, so all values of AN affecting this integral will be greater than X. We can therefore
dispense with the “max” function in the second integral:

C2 =
∫ +∞

X
EAN [AN − X | G N ]l(G N ) dG N

=
∑

N

∫ +∞

X
EAN [Sn | G N ]l(G N ) dG N − X

∫ +∞

X
l(G N ) dG N (17.24)

The exact meaning of the symbol
∑

N in front of the first term depends on the type of arithmetic
averaging used. For deferred averaging we would write

∑
N

Sn ⇒ 1

N − ν + 1

N∑
n=ν

Sn

On the other hand, for in-progress averaging we would have

∑
N

Sn ⇒ ν

N + ν + 1
Ā + 1

N + ν + 1

N∑
n=0

Sn

It is shown in Appendix A.1(ix), item (D) that if z1 and z2 are two standard normal variables
with correlation ρ, the conditional distribution n(z1 | z2) is N(ρz2, (1 − ρ2)), i.e. normal with
mean ρz2 and variance (1 − ρ2). We now make the transformation of variables as previously:

xn = ln
Sn

S0
; gn = ln

Gn

S0
; zx = xn − mtn

σ
√

tn
; zg = gN − mgT

σg

√
T

where tn is the time from now to the point when the stock price is Sn . The correlation coefficient
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between zx and zg may now be written

ρng = cov[zx , zg] = cov[xn, gN ]

σ
√

tn σg

√
T

We will write this correlation as ρn for short. The covariance term may be explicitly derived
by using the method and notation of Section 17.3(i) as follows:

cov[xn, gN ] = 1

N − ν + 1
cov

[
xn,

N∑
i=ν

xi

]

= 1

N − ν + 1

N∑
i=ν

cov[(r1 + r2 + · · · + rn), (r1 + r2 + · · · + ri )]

= 1

N − ν + 1

{
νσ 2δT +

N∑
i=ν

iσ 2δT + (N − n)σ 2δT

}

= σ 2δT

N − ν + 1

{
1

2
(n + ν)(n − ν + 1) + N − n

}
The expectation within the integral C2 may now be written

EAN 〈Sn | G N 〉 = S0

∫ +∞

−∞
ezx σ

√
tn+mtn n(zx | zg) dzx

= S0

∫ +∞

−∞
ezx σ

√
tn+mtn

1

2π
√

1 − ρ2
n

exp

[
− 1

2
(
1 − ρ2

n

) {zx − ρn zg}2

]
dzx

= S0

∫ +∞

−∞
eσ

√
tn (y

√
1−ρ2

n +ρn zg)+mtn
1√
2π

e− 1
2 y2

dzx

= S0 e(m+ 1
2 σ 2(1−ρ2

n ))tn+ρnσ
√

tn zg (17.25)

where we have changed variable from zx to y and used the standard results of Appendix A.1.
A formula for C2 can now be derived using the further standard results of Appendix A.1(v):

C2 =
∑

N
S0

∫ +∞

Zg

e(m+ 1
2 σ 2(1−ρ2

n ))tn+ρnσ
√

tn zg n(zg) dzg − X
∫ +∞

Zg

n(zg) dzg

=
∑

N
S0 e(m+ 1

2 σ 2)tn N[ρnσ
√

tn − Zg] − X N[−Zg] (17.26)

where

Zg = 1

σg

√
T

{
ln

X

G0
− mgT

}
Note that this derivation has been performed assuming deferred averaging; the modification
required for in-process averaging will be left to the reader.

(iv) First Integral (C1): We are unable to evaluate this integral exactly and must therefore make a
simplifying approximation. The simplest approximation is

C1 = −
∫ X

0
EAN [max[0, X − AN ] | G N ]l(G N ) dG N

≈ −
∫ X

0
max[0, EAN 〈X − AN | G N 〉]l(G N ) dG N

(17.27)
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E[max [0, X - ST]]

max 0, E[X - ST]][

Figure 17.2 Effect of switch

In general, the effect of switching the max[·, ·] and
E[·] operators is equivalent to switching between the
value of a European put option and its asymptotes, as
shown in Figure 17.2. max[0, E[·]] is a lower bound
of all possible values of E[max[0, ·]]; one is normally
only justified in making the approximation if σ 2T ap-
proaches zero. So why do we do it in this case?

The difference is that in the present case the expec-
tation is conditioned on values of G N and the final
integral over G N only runs from 0 to X . But we have
observed several times in this chapter that although in
general AN ≥ G N , the difference in size between the
two quantities is surprisingly small. So only a very small range of AN immediately above
G N = X contributes to the calculation.

(v) A solution of this integral now proceeds as follows:

1. From equation (17.25)

EAN [X − AN | G N ] = X −
∑

N
S0 e(m+ 1

2 σ 2(1−ρ2))Tn+ρσ
√

Tn zg

where

zg = 1

σg

√
T

{
ln

G N

S0
− mgT

}

2. The form of this function is monotonic decreasing as shown in Figure 17.3. Solve the
implicit equation

EAN [X − AN | G∗
N ] = 0

[ ]E NA *
NX - A G

*G = G
G = X

G

N

N N

N

N

Figure 17.3 Geometric conditioning

for G∗
N . We can then get rid of the “max” function by changing the upper limit of integration

in equation (17.27) to G∗
N . This can be quite a substantial numerical task, depending on the

number of averaging points, and is performed by some sort of “goal seek” routine.
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3. Further use of the standard integrals of Appendix A.1(v) gives

C1 = −
{

X
∫ Z∗

−∞
n(zg) dzg −

∑
N

S0

∫ Z∗

−∞
e(m+ 1

2 σ 2(1−ρ2))Tn+ρσ
√

Tn zg n(zg) dzg

}

=
∑

N
S0 e(m+ 1

2 σ 2)Tn N[Z∗ − ρσ
√

Tn] − X N [X∗] (17.28)

where

Z∗ = 1

σg

√
T

{
ln

G∗
N

G0
− mgT

}

17.7 COMPARISON OF METHODS

In this chapter, frequent reference has been made to answers being close to each other and
distributions approximating each other, but without much quantitative backing. Now the time
has come to apply the acid test: how good are the answers obtained from the various methods
which have been described?

Table 17.1 gives an abstract from the papers quoted in the footnote. In-progress results are
less interesting in the sense that they carry the dead weight of the “average-until-now” and
therefore have less optionality than deferred average options; results for in-progress averaging
are therefore excluded. Furthermore we only quote results for the rather extreme volatility of
50%. For a volatility of 30%, errors in the answers obtained by the various methods are of the
order of one-third of the errors obtained at 50%; at a volatility of 10%, the answers obtained
by the different methods are effectively all the same.

Prices are given for two different options in Table 17.1. Both are on a non-dividend-paying
stock with a volatility of 50%; the interest rate is 9% and averaging takes place at weekly
intervals over 1 year. The “Simple Averaging” option runs for 52 weeks with the averaging
starting now; the “Deferred Averaging” option is similar but has the averaging start in 20 weeks
and then run for 52 weeks, i.e. it is a 72-week option.

Table 17.1 Comparison of models for arithmetic average options

Simple Averaging Deferred Averaging

Stock Price = 100 Strike Price Strike Price

90 100 110 90 100 110

Monte Carlo (±0.03) 18.14 12.98 9.10 24.17 19.38 15.44

Geometric 16.75 11.76 8.00 22.61 18.02 14.26
Vorst 18.00 12.71 8.71 23.79 19.00 15.06
Modified geometric 18.20 12.94 8.93 24.10 19.34 15.40
Levy 18.38 13.16 9.17 24.24 19.50 15.57
T&W (elementary) 17.66 12.86 9.22 23.58 19.26 15.63
T&W (higher moments) 18.13 13.00 9.12 24.02 19.35 15.49
Geometric conditioning 18.14 12.98 9.07 24.10 19.37 15.47

Note: Results taken from Levy and Turnbull (1992) and Curran (1992).
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A Monte Carlo method has been used to obtain the “right answer” which is quoted with an
indication of its accuracy (1 standard deviation). The numbers really speak for themselves but
a few comments are worth making:

� Approximating the price of an arithmetic average option by a geometric option price is not
nearly close enough for commercial purposes.

� The geometric conditioning method (Curran) wins hands down.
� Modified geometric (adjusted mean only) does quite well, and the more sophisticated Levy

correction seems to make things worse rather than better.
� Turnbull and Wakeham in its elementary form (matched mean and variance) is disappointing,

given the sophistication of the mathematics and given that it was designed as an improvement
on Levy.

� Turnbull and Wakeham is much improved if we match skewness and kurtosis [see
Section 17.5(iv)], although it is still inadequate for in-the-money deferred average call
options.
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18

Passport Options

This part of the book has been devoted to the so-called exotic options, which have varying
degrees of importance as commercial instruments in their own right, as well as giving live
examples of the application of the theory developed in the first two parts of this book. Broadly,
they fall into three categories: correlation options, barrier options and average options. The
mathematics used to describe these options has so far been restricted to “classical” methods
(statistical distribution theory, differential equations, etc.) In Part 4, we develop the tools for
a more “modern” approach using stochastic calculus, and show that the exotic options can be
described with greater elegance although at the expense of greater formalism and with few
new conclusions.

We leave Part 3 with this short chapter, which is introduced for two reasons: first, the
passport option is extremely innovative and interesting. There has been a fairly widely held
assumption in the trade since the early 1990s that all the really useful exotics on equities
or currencies have already been invented, and future research would merely come up with
overcomplicated and impractical ideas. But the passport option is a recent development in a
completely new direction, having obvious commercial applicability. Second, the description
of these instruments stretches the envelope of the option theory that has been presented in the
book so far, and also provides an excellent case study of the complementary nature of classical
and modern methods of analyzing options (Andersen et al., 1998).

18.1 OPTION ON AN INVESTMENT STRATEGY
(TRADING OPTION)

(i) Imagine a trader who specializes in a single asset such as a currency or a stock option; he can
only go long or short up to a fixed maximum, and relies entirely on timing to make his profit.
The trader’s record has been good in the past but his manager is concerned about the general
economic outlook for the next 6 months. Therefore, without telling the trader, he buys an
option with the following payoff: the cumulative loss made by the trader in the next 6 months,
or zero if the trader makes a cumulative profit. This option is called a passport option.

One’s first reaction to this option is to question whether it can be sensibly priced at all:
after all, the trader could be doing absolutely anything, so how can we ascribe an expected
value to his losses. The answer of course is that he cannot do anything; he is constrained in
the maximum position he can take and we price the option by assuming that he systematically
follows the worst strategy within this constraint. All this presupposes that there exists a worst
strategy. One’s instinct is that maybe the worst strategy is to maintain a constant short position
of 100%, on the grounds that a positive drift (r − q) will ensure that this strategy makes a loss
more than 50% of the time; however, this turns out not to be the case.

A “worst” strategy as described above and a “best” strategy are simply the reciprocal of each
other, i.e. we just change long positions to shorts and vice versa. The analysis which follows
is expressed in terms of “best” or “optimal” strategy.
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Our approach will be to derive a differential equation using just the same riskless hedge
approach as we used to derive the Black Scholes equation in Section 4.2 . The optimum strategy
will emerge as a by-product, together with an option replication strategy.

(ii) The Trading Option: This is specified as follows. A trader manages a stock position in such
a way that he may never be more than one share long or short (fractional shares allowed). He
manages according to a strategy ut , where ut is the amount of shares held at time t, and is
subject to the constraint |ut | < 1.

Examples of strategies are:

� At the beginning of each day go long or short depending on what would have made money
yesterday.

� Go long on odd days and short on even days.
� Take positions that replicate a put option.

An example of a strategy, which we do not consider for obvious reasons, is “go long on days
when this produces a profit”.

The cumulative profit/loss generated by a strategy between time zero and t is written wt .
The trading option is defined as having payoff max[0, wT ] and the value of this option is given
by

f = e−rT E[max[0, wT ]]risk neutral

The precise value of f obviously depends on the precise strategy ut which generates wt , but
we keep the argument general for the moment.

(iii) Partial Differential Equation for Trading Option: It is assumed that St and wt follow the
Wiener processes

δSt = (µ − q)Stδt + σ StδWt and δwt = utδSt

Be careful not to confuse wt and Wt : unfortunate, but this is the most common notation.
Assume that we can construct a riskless portfolio consisting of one unit of option and −�

units of the underlying stock; its value is f − �t St and its shift in value over a small interval
is δ f − �tδSt . Since it is riskless, its rate of return must equal the risk-free return, so that

δ f − �tδSt − q St�tδt = ( f − �t St )rδt (18.1)

So far, we are headed towards deriving the Black Scholes equation again; but this time, f also
depends on wt so that the Taylor expansion is

δ f = ∂ f

∂t
δt + ∂ f

∂St
δSt + ∂ f

∂wt
δwt +

{
∂2 f

∂S2
t

(δSt )
2 + 2

∂2 f

∂St∂wt
(δSt∂wt ) + ∂2 f

∂w2
t

(δwt )
2

}

In addition to the substitution (δSt )2 → S2
t σ

2δt which we previously used for deriving the
Black Scholes equation, we now have the following: (δwt )2 → u2

t S2
t σ 2δt and (δStδwt ) →

ut S2
t σ

2δt . Putting these into the Taylor expansion gives Ito’s Lemma for this particular problem,
analogous to equation (3.12):

δ f =
{

∂ f

∂t
+ S2

t σ 2

(
∂2 f

∂S2
t

+ 2ut
∂2 f

∂St∂wt
+ u2

t

∂2 f

∂w2
t

)}
δt +

{
∂ f

∂St
+ ut

∂ f

∂wt

}
δSt
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Plugging this back into equation (18.1) and setting the coefficient of δWt equal to zero (since
the deal is risk-free) gives

∂ f

∂t
+ S2

t σ
2

{
∂2 f

∂S2
t

+ 2ut
∂2 f

∂St∂wt
+ u2

t

∂2 f

∂w2
t

}
+ (r − q)St

{
∂ f

∂St
+ ut

∂ f

∂wt

}
= r f

and

� = ∂ f

∂St
+ ut

∂ f

∂wt
(18.2)

This looks like a complex PDE in two “space” variables St and wt ; but for fixed ut , St and wt

have perfect correlation, i.e. they are not really different variables. We now look for a single
variable that serves for both.

(iv) Transformed PDE for a Trading Option: The homogeneity arguments of Section 11.1(ii)
indicate that the trading option price is a homogeneous function of St and wt , so that

f (t, St , wt ) = St f (t, wt/St ) = Stv(t, xt ) where xt = wt/St

This change of variable can be applied to equations (18.2) using the following transformations:

∂ f

∂St
= v − xt

∂v

∂xt
;

∂2 f

∂S2
t

= xt
∂2v

∂x2
t

∂ f

∂wt
= ∂v

∂xt
;

∂2 f

∂w2
t

= 1

St

∂2v

∂x2
t

;
∂2 f

∂St∂wt
= − xt

St

∂2v

∂x2
t

so that the equations become

∂v

∂t
+ (ut − xt )(r − q)

∂v

∂xt
+ 1

2
σ 2(ut − xt )

2 ∂2v

∂x2
t

= qv

and

�t = v + (ut − xt )
∂v

∂xt
(18.3)

with boundary condition v(T ) = max[0, xT ].

v
v(T)

tx
v(t )

Figure 18.1 Trading option price

(v) In terms of the parameter xt , the payoff v(T ) of the op-
tion is given by the usual hockey-stick payoff diagram
with v(t) having the general form of the dotted curve
in Figure 18.1. The precise form of v(t) will of course
depend on the exact form of the strategy ut employed.
However, it is apparent from the general form of the
v(t) curve that

0 ≤ ∂v(t)

∂xt
and 0 ≤ ∂2v(t)

∂x2
t

(18.4)
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18.2 OPTION ON AN OPTIMAL INVESTMENT STRATEGY
(PASSPORT OPTION)

(i) The Optimal Strategy: We now pose the following question: “Is there some optimal strategy
which could be followed by our hypothetical portfolio manager, which gives a greater expected
return than all others?” If there is, an option on this strategy would be more expensive than
options on all other strategies. We therefore turn the question on its head and ask: “what strategy
maximizes the value of a trading option?”.

Equation (18.3) may be rewritten as

v(t) = 1

q

{
Au2

t + But + C
}

where

A ≡ 1

2
σ 2 ∂2v(t)

∂x2
t

; B ≡ (r − q)
∂v(t)

∂xt
− xtσ

2 ∂2v(t)

∂x2
t

C ≡ ∂v(t)

∂t
− xt (r − q)

∂v(t)

∂xt
+ 1

2
x2

t σ
2 ∂2v(t)

∂x2
t

Write Ut as the value of ut for the strategy that maximizes v(t) in the last equation. Some
critical points emerge:

� B and C may be positive or negative; but from equation (18.4), we always have 0 ≤ A. We
assume 0 < q .

� It follows that v(t) is a maximum if ut is as large as possible; but remember that ut is
restricted to −1 < ut < +1. The optimal strategy therefore has U 2

t = 1 or Ut = ±1.
� Switching our attention to the second term in brackets, v(t) is a maximum if BUt is always

positive, i.e.

Ut = sign B = sign

{
(r − q)

∂v(t)

∂xt
− xtσ

2 ∂2v(t)

∂x2
t

}
(18.5)

where sign a = +1(0 ≤ a), −1(a < 0).

This completely defines the optimal strategy. From equation (18.3), the delta of the option is
given by

� = v(t) + (sign B − xt )
∂v(t)

∂xt

so that the delta jumps each time the sign of B changes.

(ii) Driftless Solution: We should now be in a position to solve the partial differential equation,
finding an analytical expression for v(t), and hence for the value of a passport option. But
disappointingly, equation (18.3) is too hard to solve, except in the driftless case where r = q
and Ut = sign B = sign xt = sign wt and so

∂v(t)

∂t
+ 1

2
σ 2(1 + |xt |)2 ∂2v(t)

∂x2
t

= qv(t)

An analytical solution may be obtained for this using Laplace transforms; however, in view of
the restricted applicability, we will not derive an explicit formula here.
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(iii) Intuitive Analysis: At this point it is worth stepping back to reflect on the optimum solution
we have found, and its implications. Confronted with the passport problem for the first time,
most people would give the following intuitive analysis:

(A) The Wiener process δSt = (r − q)Stδt + σ StδWt implies that E[ST ] = S0 e(r−q)T .
(B) The optimum trading strategy should therefore be to stay 100% long if the drift (r − q) is

positive, since there is more than a 50–50 chance of an up move. If the drift is negative,
stay 100% short.

(C) Price the passport option to correspond to the strategy laid out in the last point, i.e. as a
call if the drift is positive and as a put if it is negative.

(D) If there is an accumulated trading profit/loss w0 at t = 0, this is merely set aside and
accounted for at the end; it will not affect the value of the passport option except in a
trivial, additive way.

Point (A) is undisputed. Looking at equation (18.5) shows that point (B) is almost true: the first
term in curly brackets is just a restatement of (B) and this term is usually the dominant term; but
there is an important second term which the intuitive analysis has missed. It is this term which
prevents us from using the recipe in point (C) to price a passport option. The reason why the
intuitive analysis does not hold true is that point (D) is false, as is simply demonstrated below.

value

put

0S

call

value

Figure 18.2 Driftless case with w0 = 0

(iv) Let us examine the driftless case (r − q = 0). The in-
tuitive analysis above would imply that there is no op-
timal strategy; the expectations of long, short and zero
positions are the same. This option could therefore be
priced as either a put or a call. In the even more re-
stricted circumstance where the accumulated trading
profit is exactly zero (w0 = 0), this is indeed the case.
Figure 18.2 shows the well-known symmetry of put
and call options with the same strike (at-the-money).
But unfortunately, as soon as w0 = 0, this symmetry
all breaks down.

To see why, consider the following simple, one-period model: instead of a continuous trading
strategy, the trader has to decide at t = 0 whether to go long or short for the entire period.
Depending on whether he goes long or short, the payoff will be

Payofflong =
{

max[0, ST − (S0 − w0)] w0 < S0

wT S0 < w0

Payoffshort = max[0, (S0 + w0) − ST ]

It is already obvious from the asymmetry of the payoffs in this simple model that the option
value depends on the initial trading profit w0 in some non-trivial way (i.e. not simply additive).
Clearly, in the real world where the trader has the continuous ability to change his position,
the value of the passport option will also depend on the cumulative profit. Remember, we are
still considering the driftless case, where we had previously advanced the argument that there
is no optimal strategy.

The underlying reason for the intuitive arguments not working are easy to trace back. In our
simple one-period model, the asymmetry was caused by the fact that St cannot be less than
zero. In fact, the whole issue can be traced back to an alternatively stated description of the
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same fact, i.e. the skewed nature of the lognormal distribution. If stock prices were normally
distributed, the pseudo-intuitive approach would have been correct and it would not have been
worth writing this chapter.

18.3 PRICING A PASSPORT OPTION

(i) The PDE: In the absence of an analytical solution of equation (18.3), we have to use one of
the numerical schemes of Chapter 8. The form of the equation makes explicit discretization
schemes less stable than for the heat equation, so the Crank Nicolson method is generally used.

We start by putting equation (18.3) into a slightly more familiar format:

∂v

∂T
= (U0 − x0)(r − q)

∂v

∂x0
+ 1

2
σ 2(U0 − x0)2 ∂2v

∂x2
0

− qv

Unlike the Black Scholes equation, this equation cannot be turned into a simple heat equa-
tion by a transformation of variables; if it could, we would be able to find an analytical
solution. We therefore set up the Crank Nicolson discretization in exactly the manner set out in
Section 8.4(vi), item (c) for the untransformed Black Scholes equation. The reader is unlikely
to want to share the algebraic slog, but the resultant finite difference equation is

af n+1
m+1 + bf n+1

m + cf n+1
m−1 = α f n

m+l + β f n
m + γ f n

m−1

where

a = −α = 1

4

U n
m − mδx

δx
(r − q)δt + 1

4
σ 2

(
U n

m − mδx
)2

(δx)2
δt

c = −γ = −1

4

U n
m − mδx

δx
(r − q)δt + 1

4
σ 2

(
U n

m − mδx
)2

(δx)2
δt (18.6)

(b − 1) = −(β − 1) = +1

2
σ 2

(
U n

m − mδx
)2

(δx)2
δt + qδt

The initial and boundary conditions are

f (x0, 0) = max [0, x0] ; lim
xt →−∞ f (xt , t) → 0; lim

xt →+∞ f (xt , t) → xt

This equation can be solved using the LU decomposition technique set out in Appendix A.10.

(ii) Optimal Strategy Values: A slight problem in solving this finite difference equation is that we
must simultaneously ascribe all the correct values of U n

m . The simplest way around this is to
use a trial and error approach:

� Make a reasonable (but probably erroneous) guess for all the U n
m . A reasonable start is to

use the driftless value U 0
m = sign x0. Make a further reasonable guess that U n+1

m = U n
m .

� Use an LU decomposition to calculate all the f n
m .

� Use equation (18.5) in finite difference form to calculate the U n
m , i.e.

U n
m = sign

{
1

2
(r − q)

(
f n
m+1 − f n

m−1

)− mσ 2
(

f n
m+1 + f n

m−1 − 2 f n
m

)}
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18.3 PRICING A PASSPORT OPTION

Putting in these values for the U n
m , recalculate the f n

m . Keep repeating the last two steps until
the U n

m remain constant. This procedure should only take a few iterations.

(iii) American Options: This problem is handled using exactly the same approach as for American
call and put options. An American passport option is similar to a European one, except that
the option can be exercised at any point to yield xt . The price of this option can therefore be
obtained by using the techniques of this section, but replacing each value f n

m by a value

f n′
m = max

[
f n
m, max[0, xm]

]
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Arbitrage

The concept of arbitrage lies at the heart of option theory. In Parts 1 and 2 of this book, we devel-
oped option theory from the concept of arbitrage, mostly using straightforward, classical statis-
tical analysis. The definition of arbitrage was very intuitive and stated in three different ways:

(A) Riskless sequences of transactions cannot yield a profit;
(B) If two riskless portfolios have the same value in the future, they must have the same value

now;
(C) The return on a riskless portfolio must be the risk-free rate.

These truths were taken to be self-evident and we used whichever version was the most
convenient as we went along. The formulation may have been rather loose, but it enabled us
to derive most of the equations, formulas and procedures of modern option theory, at least for
equity-type derivatives.

The purpose of this part of the book is to re-state the previous theory in a more precise,
elegant and economical way. We start by redefining arbitrage. Some of the concepts may appear
unnecessarily precious to the reader, but the results derived in this chapter allow us to apply
the whole barrage of stochastic calculus to the study of options.

19.1 SIMPLEST MODEL

State of the

World : 1

State of the
World : 2

(1)
0S
(2)
0S

(2)
2S

(1)
1S
(2)
1S

(1)
2S

State of the

World : 1

State of the
World : 2

(1)
0S
(2)
0S

(2)
2S

(1)
1S
(2)
1S

(1)
2S

Figure 19.1 One-step binomial model

(i) States of the World: We start with the simplest
conceivable model: the one-step binomial model.
This is the basic element of the binomial tree which
was extensively analyzed in Part 2 of this book. The
reader may feel that he has seen this stuff a hundred
times before and be tempted to jump to the next
section; but he is advised against this as the model
is used to define and develop some concepts which
are the foundations of this part of the book.

When this model is first introduced, it usually
refers to a stock price which starts at S0 and at a
time t later, either jumps up to a value Su or drops
down to a value Sd . But for the moment, we will take a slightly more general approach. Suppose
there exist two securities S(1) and S(2) whose values at time 0 are S(1)

0 and S(2)
0 . After time t,

two states of the world are possible: state 1 and state 2.
“State of the world” is sometimes referred to as “state of nature” or more usually just as

“state”; it is a rather pompous piece of terminology evoking geopolitical tension or global haz-
ard. What it really means is that our model is so restrictive that only two outcomes are permitted
after time t: either the values of the two securities are S(1)

1 and S(2)
1 or they are S(1)

2 and S(2)
2 .
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So how does this relate to the up–down single step model with which we are already familiar?
In that case, we usually consider three securities S(1), S(2) and S(3). The first security is a zero
coupon bond which has the same value whether state 1 or state 2 is achieved. S(2) is the
underlying stock which may jump up or down. S(3) is a derivative of the stock, whose jump
must depend on which way the underlying stock has jumped. We return to this case later in
this chapter.

A single step model can obviously be set up using any number of possible states of the
world; a single step trinomial model envisages three possible states. The reader should take
care not to confuse the number of states with the number of securities.

(ii) Arrow Debreu Securities: An Arrow Debreu security is defined as a hypothetical security which
has a payoff of $1 when and if a certain state of the world is achieved and zero otherwise. In
the binomial model of Figure 19.1, there are two Arrow Debreu securities:

� The value of π
(1)
t =

{
$1 if state of the world 1 is achieved at time t
0 if state of the world 2 is achieved at time t

� The value of π
(2)
t =

{
0 if state of the world 1 is achieved at time t
$1 if state of the world 2 is achieved at time t

These hypothetical securities have calculable values π
(1)
0 and π

(2)
0 at time 0. Although this

concept seems a rather artificial construction when first encountered, it will be seen to fall
naturally out of arbitrage theory in a couple of pages.

(iii) Consider a portfolio of two stocks in a simple model with two final states. The portfolio contains
x (1) and x (2) units of securities S(1) and S(2); in vector notation, the value of the portfolio at
time 0 may be written

V0 = (S(1)
0 S(2)

0

) (x (1)

x (2)

)

By time t, the world has moved to either state 1 or state 2, so that the value of the portfolio is
either V1 or V2. In matrix notation this may be written(

V1

V2

)
=
(

S(1)
1 S(2)

1

S(1)
2 S(2)

2

)(
x (1)

x (2)

)

or

Vt = Stx

At first sight it appears that we could construct a portfolio with any payoff we please (i.e.
any values of V1 and V2), just by a suitable choice of x (1) and x (2), the quantities of each
security. Once we have decided on the payoff we calculate the quantities from the last equation,
rewritten as

x = S−1
t Vt

However, this is only true if St is an invertible (non-singular) matrix. This condition requires
the columns (or rows) of St to be independent of each other. We could not, for example, have
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19.2 THE ARBITRAGE THEOREM

S(1) and S(2) perfectly correlated with each other since column 1 in the matrix would then be a
multiple of column 2. Similarly, the securities could not both be bonds. On the other hand, S(1)

as a bond and S(2) an equity stock works just fine. If the condition holds that St is non-singular,
we say that the securities S(1) and S(2) form a complete market.

If we add further securities to an already complete market, we do not of course destroy the
completeness property. In subsection (i) we referred to a market with a bond, a stock and a
derivative, so that the above matrix equation would be written

(
V1

V2

)
=
(

S(1)
1 S(2)

1 S(3)
1

S(1)
2 S(2)

2 S(3)
2

) x (1)

x (2)

x (3)




The 3 × 2 matrix St is invertible (it has rank 2) and any payoff can be created with a suitable
choice of x (1), x (2) and x (3). However the market was already complete before we added the
derivative S(3). By the definition of completeness, we can replicate S(3) with a combination of
S(1) and S(2): (

S(3)
1

S(3)
2

)
=
(

S(1)
1 S(2)

1

S(1)
2 S(2)

2

)(
a(1)

a(2)

)

In this sense, the derivative S(3) might be called a redundant security in that its payoff can be
simulated by a combination of other securities. But of course there is no reason to single out
S(3) as the redundant one; any one of S(1), S(2) or S(3) can be manufactured from a combination
of the other two.

In this simple model with only two states of the world at time t, it is clear that the market is
complete if there are at least two independent securities. More generally, the market is complete
if the number of independent securities is at least equal to the number of final states of the
world; more precisely, St may be inverted if rank St ≥ w, where w is the number of states of
the world.

19.2 THE ARBITRAGE THEOREM

(i) The notation introduced in the last section is extended to a model with n securities and w final
states. The initial value of a portfolio containing x (1), . . . , x (n) units of each security is given
by

V0 = (S(1)
0 · · · S(n)

0

)
x (1)

...

x (n)




and its various possible future values, depending on the state of the world which is achieved,
can be written as 


V1
...

Vw


 =




S(1)
1 · · · S(n)

1
...

...

S(1)
w · · · S(n)

w






x (1)

...

x (n)
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19 Arbitrage

or

Vt = Stx

(ii) The Arbitrage Hypothesis: This states that

if in Vt, all Vi ≥ 0, then V0 > 0

This is an extremely economical statement of the principle of arbitrage. It says nothing about
interest rates or expected future values. It merely asserts that if you construct a portfolio which
gives you a chance of making a positive return in the future but carries no risk of making a
loss, then the portfolio must cost something now. This is often known as the “no free lunch”
principle, and a market which obeys the condition is known as a viable market. This statement
of the arbitrage hypothesis is so minimalist and obvious that the reader might assume that few
interesting consequences could follow from it: wrong!

(iii) Farka’s Lemma: Before proceeding to the main point of this chapter, we need this standard
result which is a piece of pure mathematical formalism and is explained in Appendix A.11.
In terms of the matrices used in this chapter, Farka’s lemma states that for any non-singular
matrix St (e.g. representing prices in a complete market), one of the two following mutually
exclusive circumstances must hold:

(A) Either there exists a vector x such that x′S′
0 < 0 and all the elements of x′S′

t ≥ 0.
(B) Or there exists a vector π in the equation S′

tπ = S0 such that all elements of the vector
π are positive, i.e. all πi ≥ 0.

(iii) The Arbitrage Theorem: Circumstance (A) can be written in full as

x′St = x (1)S(1)
0 + · · · + x (n)S(n)

0 = V0 < 0

while all the elements of the vector (V1V2 · · · Vw) are ≥0. But this circumstance is the very
thing that is forbidden by the arbitrage hypothesis. Therefore this circumstance cannot hold.
The arbitrage theorem is a specific statement of circumstance (B), which must hold instead.
This states that if a market is viable and complete, then there exists a vector π, each of whose
elements are positive, such that

S′
tπ = S0

The reader who is fresh to this material is likely to be thinking “is that it then?”. But this
innocuous-looking little theorem is really the keystone of axiomatic option theory; it is often
referred to in the literature as the Fundamental Theorem of Asset Pricing.

19.3 ARBITRAGE IN THE SIMPLE MODEL

(i) Returning to a model with three securities and two final states of the world (up and down), the
arbitrage theorem can be written as follows:

if

(
Vu

Vd

)
=

(
S(1)

u S(2)
u S(3)

u

S(1)
d S(2)

d S(3)
d

)x (1)

x (2)

x (3)
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19.3 ARBITRAGE IN THE SIMPLE MODEL

then the arbitrage theorem says that there exist two positive numbers πu and πd such that


S(1)
0

S(2)
0

S(3)
0


 =




S(1)
u S(1)

d

S(2)
u S(2)

d

S(3)
u S(3)

d



(

πu

πd

)

What physical or economic significance might we attach to the numbers πu and πd? Suppose
that S(1) is an Arrow Debreu security which pays out $1 if the up-state is achieved and zero
for the down-state (S(1)

u = 1, S(1)
d = 0). Also, let S(2) be the security which does the reverse,

i.e. S(1)
u = 0, S(1)

d = 1. From the last matrix equation we then have

S(1)
0 = πu ; S(2)

0 = πd

We conclude generally that πu and πd are today’s values of the two corresponding Arrow
Debreu securities.

(ii) It will cross the mind of the perceptive reader that a state price must reflect two concepts: first,
it is today’s value of a payoff in the future so that some form of discounting has to take place.
Second, a payoff is non-zero only if one specific state of the world occurs, so that the state
price must somehow reflect the probability of this one particular state being achieved.

In our simple model we let S(1) be a zero coupon bond. Without loss of generality, it can be
assumed that the value of the zero coupon bond is $1 at time 0 and Bt at time t. We can then
write S(1)

0 = 1 and S(1)
u = S(1)

d = Bt since the value of a zero coupon bond will be the same in
both states of the world, up and down. By the definition of continuous interest, we could also,
write Bt = er t .

The arbitrage theorem in our three-security model then becomes:


1
S(2)

0

S(3)
0


 =




Bt Bt

S(2)
u S(2)

d

S(3)
u S(3)

d


(πu

πd

)

The top line of this vector equation is:

1 = Bt {πu + πd}
Define two new variables: pu = Btπu and pd = Btπd ; the first two lines of the above vector
equation can be combined as

S(2)
0 = B−1

t

{
pu S(2)

u + pd S(2)
d

}
; pu + pd = 1

If the interest rate is constant we have B−1
t = e−r t . Introducing the zero coupon bond as the

first security suggests that the state prices do indeed contain a discounting and a probability
element. Certainly, some sort of discount factor has appeared outside the right-hand side of the
last equation and the terms look suspiciously like probabilities. Of course there is nothing to
associate the pu and pd with actual probabilities of the up- or down-states of the world being
achieved: they just look as though they might be candidates.

(iii) We now consider a portfolio consisting of a zero coupon bond, an equity stock and a derivative
of that stock. Simplifying the notation to the specific case in hand, the arbitrage theorem states
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19 Arbitrage

that positive state prices πu and πd must exist such that
 1

S0

f0


 =


Bt Bt

Su Sd

fu fd


(πu

πd

)

Writing Bt = er t and p = Btπu , this vector equation can be written

S0 = e−r t {pSu + (1 − p)Sd}
f0 = e−r t {p fu + (1 − p) fd}

The conclusions to be drawn from these last two equations are as follows:

(A) The present price of the stock S0 can be derived from the two possible future prices Su and
Sd by using a discount-like factor e−r t and two probability-like parameters p and (1 − p).
We say discount-like and probability-like since the actual returns on the risky assets S
and f cannot be the risk-free rate; also, there is nothing to link p with the probability of an
up-state occurring. We have of course reinvented risk-neutrality arguments which received
extensive discussion in previous parts of this book.

(B) The same discount-like factor and pseudo-probability are used to calculate the present
values of both the underlying stock and its derivative.

These conclusions are merely a re-statement of the results of Section 7.1, where a single cell
of the binomial model was analyzed. The reader is recommended to flick through those pages
briefly to compare the very formalistic derivation here with the rather home-spun arguments
used previously. But don’t knock them; they yielded precisely the same conclusions and had
the advantage of providing an intuitive feel for what is going on. Their disadvantage is that
they cannot be readily generalized and extended.
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Discrete Time Models

In the last chapter an elementary single step model of an option price was built up from
a very simple statement of the arbitrage hypothesis. The theoretical concept of state prices
was introduced, but otherwise it was purely a matter of mathematics to reach the important
conclusions on risk neutrality and pseudo-probabilities.

The logical progression is to string together single steps to form a multistep model, examine
the limit as the number of steps becomes very large and finally, extrapolate to the continuous
case. The mathematics and jargon are likely to be less familiar to the reader, although we
assume that he already has at least an elementary understanding of how the binomial model
works. We therefore start by introducing some essential mathematical jargon in the context of
a simple, recombining binomial tree.

20.1 ESSENTIAL JARGON

Before we start, the reader is introduced to a mantra which starts most technical papers in this
field: “The triplet (�,F, P) is a probability space where � is a sample space, F is a tribe on
� and P is a probability measure.” This essentially says “well, here we are: in what follows,
we’re going to use some of the notation of axiomatic probability theory”. Referring to the
binomial tree of Figure 20.1, the sample space � is the set of all nodal values Si j in the tree
together with the set of permitted paths through the tree; we have shown a recombining tree so
this latter aspect is self-evident, but in a non-recombining tree we need to define the permitted
jumps at each node. The reader will recall that when we build a tree, we have quite a lot of
alternatives in the construction: we can decide on the number of steps and we have leeway
in deciding the sizes of the up and down steps. They are not completely arbitrary since we
must be able to replicate the observed drift and volatility; but subject to this constraint, an
infinite number of alternatives are available to us. The most popular are the Jarrow–Rudd
and Garman–Kohlhagen schemes described in Section 7.2. The sample space is basically the
architecture of the tree, which we chose at our discretion.

The probability measure P is the set of probabilities of jumps (p00, . . . , p22) at the various
nodes. From his knowledge of trees, or from his reading of Section 19.3, the reader will
appreciate that once the sample space has been selected, the probability measure follows from
arbitrage considerations. Taken together, � and P define the tree. Looking back at Chapter 7,
the reader will recall that in building a binomial tree, one has leeway in choosing the stock
prices at the nodes and the probabilities of up or down moves. � and P are the particular
choices one makes in constructing such a tree.

In the present context, the tribe FFFFFFFFFFFFFFFFFFF (also known as a σ-algebra or σ-field ) can be taken as
meaning the information available to us as we move through the tree over time. In Figure 20.1,
at time t0 the information we have is designated F0 and is merely a knowledge of the ge-
ometry of the tree; we know this because we built the tree (i.e. selected the values at the
nodes). � is therefore all that F0 contains, which is often written F0 = {�, 0}. At time t1



20 Discrete Time Models

the information available to us is F1; we know whether the stock price jumped up or down
at the first node. F1 is called a subtribe of F . At time t3 in our example, the information is
F3 and we know precisely how the stock price has moved over the entire tree, i.e. we know
everything.

It is assumed that information is not “forgotten” so that F2 includes the information in F1

and so on. This is written symbolically as F0 ⊂ F1 ⊂ F2 ⊂ F3. If this condition holds true,
the set of subtribes F0, F1, F2, . . . is called a filtration. In our present example, we say that
this filtration is generated by the specific binomial process shown in Figure 20.1.

A random variable isFFFFFFFFFFFFFFFFFFF-measurable if its value at ti can be determined fromFi . For example,
the stock price itself Si is clearly F-measurable. From his previous knowledge of the binomial
model, the reader will realize that the price of a call option is also F-measurable. OK, so what
random variable is not F-measurable? Well, the average price of the stock between t0 and t3,
or the minimum price between t0 and t3.

A process is the sequence of values that a random variable can take. It is defined by � above.
The process is said to be adapted or consistent if the random variable is F-measurable.

A variable is previsible if its value at time ti+1 is known at time ti . An obvious example is a
bond, whose payoff at a later date is determined by the interest rate at an earlier date.

00S

11S
22S 33S

23S
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03S

12S

01S

p
00

p11

p
22

12
p

0t 1t 2t 3t

02S

1 - p
00

1 - p
01

1 - p
02

Figure 20.1 Binomial tree with variable probabilities

20.2 EXPECTATIONS

(i) The concept of conditional expectation has been extensively exploited in previous parts of
this book and we merely adapt it here to conform with the new terminology that has been
introduced. Continuing with the binomial tree example of the last section, the probability of a
random variable achieving value x j at time t j given that we know what value it achieved at an
earlier time ti is written as

EP [x j | Fi ]

The notation is similar to what was used previously in the book, but the knowledge of the
actual value at ti is indicated by Fi . Also, a superscript P has been inserted to indicate the set
of jump probabilities that are used. Clearly, we draw attention to these probabilities because
there are circumstances where we will wish to tinker with them.

(ii) Conditional Expectations: These are manipulated extensively in the following pages, so the
reader is reminded of some simple rules.
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� EP [x j + y j | Fi ] = EP [x j | Fi ] + EP [y j | Fi ] ti < t j
� EP [x j yi | Fi ] = yi EP [x j | Fi ] ti < t j
� EP [ai+1xi+1 | Fi ] = ai+1 EP [xi+1 | Fi ] if ai+1 is previsible

Note that it is often easier to express a previsible variable ai+1 as a straightforward random
variable yi , in which case the last two rules reduce to the same thing:

� EP [EP [xk | Fi ] | Fi ] ≡ EP [xk | Fi ] ti < t j < tk

This last property is the much used tower property, and needs a little thought: it says that
today’s expected value of the future value of a random variable cannot depend on knowledge
that will be picked up in the future!

(iii) Martingales: A random variable xi is called a martingale under the measure P (or a
P-martingale for short) if it has the following property:

EP [xi+1 | Fi ] = xi for all possible i

It follows from the tower property that if xi is a martingale then

EP [xi+2 | Fi ] = EP [EP [xi+2 | Fi ] | Fi ] = EP [xi+1 | Fi ] = xi

This may be immediately generalized to give the martingale property:

EP [xi+n | Fi ] = xi

A martingale has no tendency to drift, no matter how many steps are considered.

20.3 CONDITIONAL EXPECTATIONS APPLIED
TO THE ONE-STEP MODEL

The new vocabulary will now be applied to the simple one-step binomial process and some of
the results previously derived will be stated formally.

1, S0 , f0

p

1 - p

Bt , Sd ,  fd

Bt , Su, fu

Figure 20.2 One-step process

(i) Martingale Properties: We should perhaps begin by
saying that “the triplet (�,F, P) is a probability space
where � is a sample space, F is a tribe on � and P is a
probability measure”. The sample space � is simply an
up-move and a down-move, with the size of the move
determined by the values of Su and Sd (Figure 20.2).
It was shown in Section 19.3(iii) that if the market is
viable, then

S0 = B−1
t (pSu + (1 − p)Sd )

f0 = B−1
t (p fu + (1 − p) fd ) (20.1)

where p and (1 − p) are pseudo-probabilities; these are what we call the probability measure.
If we vary � by changing the values Su and Sd , we must change the probability measure. In
Chapter 7 on the binomial model, various ways were suggested for choosing Su and Sd on the
one hand, and calculating the corresponding values of p on the other; in the present terminology,
various sample spaces were selected to correspond to different probability measures.
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The variables are indeed F-measurable: at time 0 we know the values of S0 and f0 but do
not know whether the jump will be up or down. At time t, we know whether the jump was up
or down and whether the values become Su , fu or Sd , fd . Thus the processes for St and ft are
adapted. The random variable Bt is previsible: at time 0 when its value is $1, we know what
the interest rate is and hence that its value at time t will be er t , whether the jump is up or down.

St denotes the stock price at time t, which in our present model can take values Su and Sd

only; similarly for ft . By the definition of EP in terms of pseudo-probabilities p:

EP [St | F0] = pSu + (1 − p)Sd and EP [ ft | F0] = p fu + (1 − p) fd (20.2)

Substitute equations (20.1) in equations (20.2) and use the previsibility property of Bt and the
convention B0 = 1 to give the following key results:

EP
[
B−1

t St

∣∣F0
] = B−1

0 S0 and EP
[
B−1

t ft

∣∣F0
] = B−1

0 f0 (20.3)

Remember that the existence of these pseudo-probabilities is a consequence of the arbitrage
theorem of the last chapter. We can therefore say that (for the one-step model at least), the ar-
bitrage theorem implies that the discounted price process for the stock is a P-martingale;
the discounted price process of a derivative of the stock is also a martingale under the same
probability measure. These last two points taken together justify the martingale measure being
referred to as the risk-neutral measure.

(ii) The Martingale Representation Theorem: One final result is required before we generalize
these results to a multistep binomial model. Suppose Mt is any one-step martingale. The
martingale property can be written E[Mt | F0] = M0 or alternatively as E[Mt − M0 | F0] = 0.
If another random variable Ht is defined by

Ht − H0 = a0(Mt − M0)

where a0 is known at time 0, then Ht is also a martingale. This follows immediately from
taking the expected values of both sides of the last equation.

This rather trivial result has a very powerful corollary known as the Martingale Represen-
tation Theorem. This states that:

If Mt is a P-martingale, any other P-martingale Ht can be expressed as

Ht − H0 = a0(Mt − M0)

This theorem lies at the heart of the reasoning used in analyzing the multistep binomial model,
so it is important to be quite clear about its significance. We will therefore go back to basics
and see precisely what underlies the theorem.

(iii) If Mt and Ht are both P-martingales, each has sample space (�) consisting of an up-move or a
down-move; this is illustrated in Figure 20.3. At time 0 we not only know M0 and H0 and also
the possible values that could be attained at time t, i.e. Mu , Md and Hu , Hd (in formal jargon,
� is contained in the set F0), we also know that the probabilities pu and pd are the same for
both processes (both are P-martingales). What we do not know is whether the actual jump will
be up or down.

The critical question posed is the following: is there some unique number a0 which can be
calculated ahead of time such that

Ht − H0 = a0(Mt − M0) (20.4)
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irrespective of whether Mt and Ht turn out to have been up-moves or down-moves? Mt and Ht

are both stated to be martingales so that

E[Mt | F0] = pu Mu + pd Md = M0

E[Ht | F0] = pu Hu + pd Hd = H0

up

0M

uM

dM

dp

0H

uH

dH

up

dp

+pu pd = 1

Figure 20.3 Two single-step martingales

Substituting these values of M0 and H0 in equation (20.4) and using the identity pu + pd ≡ 1
gives

(pu + pd )Ht − (pu Hu + pd Hd ) = a0((pu + pd )Mt − (pu Mu + pd Md ))

Simple substitution of either Mt , Ht = Mu, Hu or Mt , Ht = Md , Hd in this expression yields
the same answer:

a0 = Hu − Hd

Mu − Md

Thus a unique number can be calculated for a0 such that equation (20.4) holds true, whichever
final state occurs at time t. This proves the martingale representation theorem for the one-step
case.

20.4 MULTISTEP MODEL

(i) Consider a binomial tree, which does not necessarily have to be recombining. The first step in
analyzing the tree is to see what general results can be carried over to the multistep case, from
the one-step model.

By construction, the multistep model is made up of a sequence of single binomial steps
strung together. The arbitrage theorem applies to each of these single steps, so that a probability
measure exists for each step. It follows that a probability measure exists for the entire tree.
Remember that a probability measure is the set of all branching probabilities, which do not of
course need to be uniform throughout the tree.

(ii) Equations (20.3) show that B−1
t St and B−1

t ft are both martingales over a single step. They are
martingales over any step (not just the first) so that we may write

E[S∗
i | Fi−1] = S∗

i−1 E[ f ∗
i | Fi−1] = f ∗

i−1

where S∗
i = B−1

i Si and f ∗
i = B−1

i fi . These results will be more useful in the form of martingale
differences:

E[S∗
i − S∗

i−1 | Fi−1] = 0 E[ f ∗
i − f ∗

i−1 | Fi−1] = 0 (20.5)
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It follows immediately from repeated application of these results and from the tower property
that

E[S∗
i | F0] = S∗

0 = S0 E[ f ∗
i | F0] = f ∗

0 = f0

(iii) Martingale Transformations: Let Mi be a P-martingale. If

Hi − Hi−1 = ai−1(Mi − Mi−1)

then Hi is also a P-martingale. This is demonstrated simply by taking expectations of each
side. In general, any P-martingale difference multiplied by an Fi−1 measurable variable is
also a P-martingale difference. This procedure is called a martingale transformation of the
martingale Mi to the martingale Hi .

(iv) The Multistep Martingale Representation Theorem: The above single-step result can be
generalized to the multistep model and expressed as follows: if Mi is a P-martingale, any other
P-martingale Hi can be expressed as Hi − Hi−1 = ai−1(Mi − Mi−1) by a suitable choice of
ai−1. The latter is a random variable whose value depends on which way previous jumps in
the tree have gone; it is Fi−1-measurable, i.e. from the geometry of the tree, you can work out
its value at node i − 1 before the next jump occurs.

This theorem is often written as Hi − Hi−1 = bi (Mi − Mi−1) where bi is a previsible ran-
dom variable, but we feel that our present notation is more explicit and makes the reasoning
easier to follow.

20.5 PORTFOLIOS

(i) Suppose we are running a portfolio consisting of α units of stock and β units of zero coupon
bond. We analyze the progress of the portfolio using a binomial tree, so that the values of
both the stock and the bond are different at each node. The portfolio is run in accordance
with some trading strategy, changing the values of α and β in response to market move-
ments, according to a set of pre-established rules. The value of the portfolio at node i may be
written

Vi = αi Si + βi Bi

where αi and βi are adapted (or F-measurable) random variables, i.e. the fund manager gets to
step i, sees what the stock price and zero coupon interest rate are, and rebalances the portfolio
following the rules of his strategy by selecting new values for αi and βi .

We now impose two conditions on the portfolio, neither of which is onerous. First, we
assume that the market is viable (i.e. that the arbitrage theorem holds). It has already been
shown that this implies that S∗

i = B−1
i Si is a martingale under some probability measure P.

(ii) Discounted Self-financing Portfolios are Martingales: The second condition imposed on the
portfolio is that it should be self-financing. By this we mean that no cash is paid into or out of
the portfolio; α and β are adjusted at each node in such a way that changes in the values of
the holdings of the two assets exactly offset each other. The effect of this constraint may be
expressed as follows:

αi−1Si + βi−1 Bi = αi Si + βi Bi

We arrive at step i having set the holdings of stock and bond at αi−1 and βi−1 one step previously.
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In view of the new stock price, we now rebalance the portfolio so that the new holdings of
stock and bond are αi and βi . In practice, this is how most real portfolios are run, with some
interest-bearing account taking the place of the zero coupon bond. A strategy which is run in
accordance with the self-financing condition is called an admissible strategy.

The values of the portfolio at times i and i − 1 may be alternatively written as follows:

Vi = αi Si + βi Bi = αi−1Si + βi−1 Bi : definition of Vi and self-financing condition

Vi−1 = αi−1Si−1 + βi−1 Bi−1: first part of last equation taken one step earlier

Divide the first equation (second part) by Bi and the second equation by Bi−1 to give

Vi B−1
i = αi−1Si B−1

i + βi−1

Vi−1 B−1
i−1 = αi−1Si−1 B−1

i−1 + βi−1

Use the notation V ∗
i = Vi B−1

i , S∗
i = Si B−1

i , etc. and subtract the second of these equations
from the first to give

V ∗
i − V ∗

i−1 = αi−1(S∗
i − S∗

i−1) (20.6)

From equations (20.5), S∗
i is a P-martingale and αi−1 is Fi−1-measurable so that V ∗

i must also
be a P-martingale.

In summary, the value of any self-financing portfolio discounted by the value of a zero
coupon bond is a martingale under the same probability measure that enforces the arbitrage
theorem, i.e. the pseudo-probabilities introduced in the last chapter and discussed in connection
with the binomial model.

(iii) The Fundamental Result of Option Theory: It was previously shown that S∗
i and f ∗

i , the
discounted prices of the stock and the derivative, are martingales under the same probability
measure P, which enforces the arbitrage theorem. In the last subsection it was shown that
the discounted value of any self-financing portfolio V ∗

i is also a P-martingale. The martingale
representation theorem therefore leads us to conclude that there must exist an Fi−1-measurable
random variable ai−1 such that

f ∗
i − f ∗

i−1 = ai−1(V ∗
i − V ∗

i−1) (20.7)

These results form the crux of option theory, so it is worth spelling out the consequences in
practical terms. If f0 is today’s no-arbitrage price of a derivative which has a payoff at step N
of fN , then:

(A) fi B−1
i is a martingale, which means that f0 = EP [ fN B−1

N | F0]. Today’s value of the
derivative is found by taking the expected value of the discounted payoff, using the prob-
ability distribution (probability measure) that applies to the discounted stock price. In
the binomial model this means adopting the pseudo-probabilities which fell out of the
arbitrage theorem and which are described in Section 19.3.

(B) Equation (20.7) tells us that the derivative price at any point may be replicated by a self-
financing portfolio. If the value of this portfolio at the beginning is set equal to f0, a
strategy may be followed such that at each node in the tree, the portfolio value is exactly
equal to fi . At maturity, the portfolio value will be exactly equal to fN , the payoff of the
derivative. This is equivalent to saying that the derivative may be perfectly hedged at all
times.
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(C) The replicating portfolio can be written fi = ai Si + bi Bi and we want to devise a strategy
which ensures the replication, i.e. we need to work out ai and bi . The fact that the portfolio
is self-financing allows us to write a martingale difference equation in the same form as
equation (20.6). Using the above notation for the replicating portfolio we have

f ∗
i − f ∗

i−1 = ai−1(S∗
i − S∗

i−1)

The architecture of the tree (the sample space �) is known ahead of time, so an ai can be
calculated for each node of the tree in advance. The analysis of Section 20.3(iii) shows
that each ai is given by an expression of the form

a = fu − fd

Su − Sd

(D) The term bi in the replicating portfolio follows immediately from a knowledge of the
ai , using the fact that the portfolio must be self-financing. At each step, we adjust the
stockholding to a new value of ai by buying or selling some stock; the change in bi is just
the amount of cash that has been spent or received on the transaction.

20.6 FIRST APPROACH TO CONTINUOUS TIME

The reader with some previous knowledge of options will realize that the central results of
discrete time option theory have been developed in the last two chapters in an axiomatic way.
Much of the pricing and hedging of options in the commercial world is performed using trees;
so this form of analysis should not be regarded as a mere learning tool for grasping the basics
before moving on to continuous time models. A binomial tree with enough steps will nearly
always yield a sufficiently accurate answer. So why go to the trouble of learning a lot more
theory?

The reason is that once these results have been recast in continuous time, there is a whole
tool-kit of mathematical techniques available for analyzing the subject: differential, integral and
stochastic calculus, to name a few. However, this does not mean that all problems can be solved
using these techniques, and we will continue to use trees to solve specific problems. A good
example is provided by American options: we would be hard pressed to give a commentary
on the relationships between the delta, gamma and theta of such options without using the
concepts of differential calculus; yet when it comes to pricing such options, there is rarely an
analytical solution available, and it is back to the trees.

As a first step towards option theory in continuous time, we investigate the behavior of the
binomial model in the limit of an infinite number of infinitesimally small steps.

(i) It is formally shown in Appendix A.1 that in the limit of an infinite number of steps, the
binomial model approaches a continuous time normal distribution. This fact is central to the
analysis presented in this part of the book, so that at the risk of a few lines of duplication, we
re-state the result using the notation of martingale differences.

Consider a single step in a tree describing a discrete time martingale Ht . The martingale
starts with value H0, and after one step Ht is equal either to Hu or Hd with probability p or
1 − p. We will use the following notation:

�Ht = Ht − H0; �Hu = Hu − H0; �Hd = Hd − H0; var[�Ht ] = �σ 2

240



20.6 FIRST APPROACH TO CONTINUOUS TIME

Remembering that Ht is a martingale allows us to write

E[�Ht ] = p�Hu + (1 − p)�Hd = 0

var[�Ht ] = E
[
�H 2

t

] = p�H 2
u + (1 − p)�H 2

d = �σ 2 (20.8)

The moment generating function of �Ht is defined as

M(�) = E[e��Ht ] = p e��Hu + (1 − p)e��Hd

In the limit �Hu and �Hd → 0, this can be expanded to second order as

M(�) = p
{
1 + ��Hu + 1

2�2�H 2
u + · · ·} e��Hu

+(1 − p)
{
1 + ��Hd + 1

2�2�H 2
d + · · ·} e−��Hd

≈ 1 + 1
2�2�σ 2: using equations (20.8)

≈ e
1
2�2�σ 2

: in the limit �σ 2 → 0

(ii) In a multistep model, the value of a martingale may be written as the sum of martingale
differences over n steps, i.e.

Hn =
n∑
1

�Hi =
n∑
1

[Hi − Hi−1]

Quite generally, the moment generating function of a sum of random variables is equal to the
product of their individual moment generating functions. Therefore, the moment generating
function of Hn is given by

M(�) = exp

[
1

2
�2

n∑
1

σ 2
i

]

= e
1
2 �2n�σ 2

for constant variance

But this is the moment generating function for a normally distributed variable with mean zero
and variance n�σ 2. This is the celebrated result that in the limit of a very large number of
very small steps, the distribution of a binomial martingale after time t will approach a normal
distribution with variance proportional to t.

In the following chapters, we will be particularly concerned with the special case where the
stochastic variable has expected mean zero and variance equal to t. In a tree which simulates
this distribution we would therefore write n�σ 2 → t . From equations (20.8), the simplest tree
is constructed by using the following values:

H0 = 0; �Hu = Hu = −Hd ; p = 1
2

so that

H 2
u = H 2

d = �σ 2 = t

n

If these values are used for Hu and Hd , the distribution of our multistep martingale approaches
a normal distribution with mean zero and variance t as n approaches ∞. The martingale is then
said to be a Standard Brownian Motion.
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21

Brownian Motion

It was shown at the end of the last chapter that in the limit of an infinite number of infinitesimally
small steps, the behavior of a discrete time martingale converges to a Brownian motion. This
chapter undertakes a review of the properties of Brownian motion. The story of buffeted pollen
grains is very familiar by now and the busy reader is probably anxious to move on to the
pricing of financial instruments as quickly as possible. However, there are important insights
to be gained by considering physical displacements rather than stock price movements. In this
chapter we lean rather heavily on such insights, so the description is couched in terms of the
movement of a particle in one dimension. We can then exploit physical concepts such as total
distance traveled in a certain time, which have no meaning if we consider only stock price
movements.

21.1 BASIC PROPERTIES

(i) The use of the expressions normally distributed, Gaussian distribution, Wiener process and
Brownian motion has been rather casual in previous parts of this book, as indeed in most of
the options literature and in practice. The following points should clarify the position:

� Normal distribution refers to the distribution of a single random variable. It is of course
possible for two normally distributed variables to be correlated, in which case they enjoy a
bivariate normal distribution. A process cannot be said to be normally distributed.

� However, if each of the random variables in a process H0,. . . , Hj are normally distributed,
the process is called Gaussian.

� A Brownian motion is the continuous Gaussian process which is described in the next
paragraph.

� A Wiener process is defined as a continuous adapted martingale whose variance is equal to
the time over which the variance is measured. It can be proved that a Wiener process must
be a Brownian motion (Levy’s theorem).

(ii) A continuous random process Wt is a standard Brownian motion if it has the following
properties:

(A) It is a martingale starting at W0 = 0.
(B) It is continuous, i.e. no jumps.
(C) It is a Markov process: the distribution of Wt − Ws depends only on the value of Ws and

not on any previous values.
(D) Wt − Ws is normally distributed with mean 0 and variance (t − s).

Any Brownian motion can of course be constructed from a standard Brownian motion merely
by applying a scaling factor for the volatility and resetting the starting point.

(iii) In terms of physical movement, a Brownian particle moves continuously along a line after
starting at the point zero. At time t its position is given by Wt . Intuition suggests that at time
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t + δt its position can be expressed as Wt + δWt . However, δWt is a random variable with
mean zero, which means that at each instant it has an equal chance of being positive or negative
and has an unpredictable size. The function Wt is therefore not differentiable at any point. A
quick glance at Figure 21.1 confirms this property; it is clear just from the form of the graphs
that the first derivative with respect to time is undefined, while the second derivative is infinite,
i.e. the function is completely “spiky” at all points.

As an aside, it is interesting to note that although Brownian motion originally referred to a
physical phenomenon, the mathematical process defined in this section could never apply to
a physical process. The infinite spikiness means that an infinite amount of energy would be
needed to get a particle with non-zero mass to follow a Brownian path.

(iv) Figure 21.1 shows a path following a standard Brownian motion. The first graph shows a par-
ticular path from time 0 to time 1 year. Suppose we now want to see what is going on in greater
detail. We take the part of the year within the dotted box and double it in size, expanding both
the x- and y-axes by a factor of two; this is shown in the second graph. Suppose we again want
to examine the path in greater detail. We double half of the second path to give the third graph.

Although the specific paths in the first and third graphs are not identical, they nonetheless
have the same general appearance in that they have the same degree of “jaggedness”, i.e. they
have the same apparent variance. The reason for this is straightforward: the variance of a
Brownian motion is proportional to the time elapsed. Thus, expanding both the x-axis (which
represents time) and the y-axis (which illustrates variance) by the same factor will result in
paths of similar appearance, despite the fact that the scales of the graph have changed. In a
word, Brownian motion is fractal: however many times we select a subsection of a path and
magnify it, its variance looks the same. Obviously, the scale of the x- and y-axes changes as
we do this, so that the actual variance of the section of the path chosen is always proportional
to the time period over which it is measured. So what, you might say: well, it does have some
unexpected consequences.
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Figure 21.1 Fractal nature of Brownian motion

Most people looking at graphs like those in Figure 21.1, would feel intuitively that if the
graphs were continued to the right far enough, the Brownian path would cross the zero line
quite often. If the x-axis were extended to be a billion times longer, the path would cross
the zero line very, very often. In fact, it is reasonable to assume that if the length of the time
axis increases to ∞, then the path will be observed to cross the zero line infinitely often.

Consider a standard Brownian motion at its starting point W0 = 0. We take a snapshot of
the beginning of the path and blow it up a billion times. Surprise, surprise: having the fractal
property described above, it “looks” just like the original path, although when we look at the
scales of the x- and y-axes, they only cover tiny changes in time and value. But we have already
admitted that we believe that if we extended the x-axis a billion times, the Brownian path will
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cross the zero line a very large number of times. We must therefore concede that given the
fractal property of the path, it will cross the zero line a very large number of times in the tiny
time interval at its beginning. The same must of course hold true any time a Brownian motion
crosses the zero line.

Indeed, it can be proved quite rigorously that when a Brownian path touches any given
value, it immediately hits the same value infinitely often before drifting away. Eventually, it
drifts back and hits the same value infinitely often again – and then it repeats the trick an
infinite number of times! These thought games are fun, but might not seem to have much to do
with option theory. However, this property of Brownian motion, known as the infinite crossing
property, is central to the pricing of options. It will be shown in Chapter 25 that without it,
options would be priced at zero volatility.

21.2 FIRST AND SECOND VARIATION
OF ANALYTICAL FUNCTIONS

The object of the following chapters is to develop some form of calculus or set of computational
procedures which can adequately describe functions of a Brownian motion, Wt . We really have
no right to expect to find such a calculus; after all, classical (Riemann) calculus was evolved
with well-behaved, continuous, differentiable functions in mind. Wt on the other hand is a
random process; while it is a function of time, it is not differentiable with respect to time at
any point. Yet a tenuous thread can be found which links this unruly function to more familiar
analytical territory. This thread is first picked up in the following section.

(i) First Variation: Consider an analytic function f (t) of t which is shown in Figure 21.2. It is most
instructive to think of f (t) as the position of a particle on a line, by analogy with the way we
consider Wt . In this case, however, f (t) is not a random process but some analytical function
of t. The particle may, for example, be moving like a pendulum or it may have acceleration
which is some complicated function of time.

Suppose the t-axis is divided into a large number N of equal segments of size δt = T/N ;
let fi be the value of f (t) at ti = iT/N . Define FN as

FN =
N∑

i=1

| fi − fi−1|

then the first variation of f (t) is defined as

F var[ f (t)] = lim
δt→0;N→∞

FN = lim
δt→0;N→∞

N∑
i=1

| fi − fi−1|

(ii) In the case where f (t) is a differentiable function, the mean value theorem of elementary
calculus says that

fi − fi−1 = f ′(t∗
t )δt

where t∗i lies between ti and ti−1 and f ′(t) is the first differential of f (t) with respect to t. Then

F var[ f (t)] = lim
δt→0;N→∞

N∑
i=1

| f ′(t∗
i )|δt →

∫ T

0
| f ′(t) | dt

This last integral can be split into positive and negative segments where f ′(t) has positive
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or negative sign [i.e. portions with +ve and −ve slope of f (t)]. In physical terms, the first
variation is the total distance covered by the particle in time T.

f(t)

tN = T

if

i-1f

ti-1 ti

T
ti - ti-1 = dt =

N

Figure 21.2 Variation

(iii) Quadratic Variation: Using the same notation as in subsection (i) above, we write QN =∑N
i=1 ( fi − fi−1)2 and then define the second variation or quadratic variation of f (t) as

Qvar [ f (t)] = lim
δt→0;N→∞

QN = lim
δt→0;N→∞

N∑
i=1

( fi − fi−1)2

Taking again the case of an analytic, differentiable function f (t), and using the same analysis
as in the last paragraph, we have

Qvar[ f (t)] = lim
δt→0;N→∞

N∑
i=1

| f ′(t∗
i ) |2(δt)2 → lim

δt→0;N→∞
δt
∫ T

0
| f ′(t) |2 dt = 0

The quadratic variation of any differentiable function must be zero.

21.3 FIRST AND SECOND VARIATION OF BROWNIAN MOTION

(i) Quadratic Variation: Let us now examine the results of the last section when f (t) is not a
differentiable function, but a Brownian motion Wt . We first examine the quadratic variation
Qvar [Wt ]. Writing for simplicity Wti ≡ Wi , the variable �Wi defined by �Wi = Wi − Wi−1

is distributed as N(0, δt). It follows that

E [�Wi ] = 0; E
[
�W 2

i

] = δt ; E
[
�W 4

i

] = 3(δt)2

The first two relationships will be obvious to the reader already, while the third can be obtained
simply by slogging through the integral for the expected value using a normal distribution for
Wi . We define QN in the same way as for the analytical function : QN =∑N

i=1 (�Wi )2, so
that the expectations just quoted can be used to give

E[QN ] =
N∑

i=1

E
[
�W 2

i

] =
N∑

i=1

δt =T
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var [QN ] =
N∑

i=1

var
[
�W 2

i

] =
N∑

i=1

E
[(

�W 2
i − δt

)2]

=
N∑

i=1

E
[
�W 4

i − 2�W 2
i δt + (δt)2

] =
N∑

i=1

{3(δt)2 − 2(δt)2 + (δt)2} = 2(δt)T

In the limit as δt → 0 and N → ∞, QN becomes the quadratic variation Q of the Brownian
path and converges to its expected value T. Although Q is a random variable, it has vanishingly
small variance. As the time steps δt become smaller and smaller, the quadratic variation of
any given path approaches T with greater and greater certainty. It is important not to confuse
the quadratic variation with the variance of Wt . Qvar [Wt ] is a random variable and refers
to one single Brownian path between times 0 and T. On the other hand, var [Wt ] = E[W 2

t ]
is not a random variable; it implies an integration over all possible paths using the normal
distribution which governs Brownian motion. The quadratic variation result of this subsec-
tion is of course a much more powerful result than the observation that the variance of Wt

equals T.
This form of convergence, whereby AN → A with the variance of (AN − A) vanishing to

zero, is termed mean square convergence. More precisely, a random variable AN converges
to A in mean square if

lim
N→∞

E[(AN − A)2] = 0

This convergence criterion will be used in developing a stochastic calculus.

(ii) First Variation: Return to the definition QN =∑N
i=1 �W 2

i where the �Wi are random vari-
ables. Suppose �Wmax is the largest of all the �Wi in a given Brownian path, then

QN =
N∑

i=1

(�Wi )
2 ≤ |�Wmax|

N∑
i=1

|�Wi | = |�Wmax|FN

However, even if it is the largest of all the �Wi , we must still have limδt→0 �Wmax → 0, and
QN converges to a finite quantity as N → ∞. This implies that

Fvar [Wt ] ≡ lim
δt→0;N→∞

FN ≥ T

lim
δt→0

|�Wmax| → ∞

The first variation of a Brownian motion goes to ∞, which is in stark contrast to the result for
a differentiable function given in Section 21.2(ii).

(iii) The surprising results for first and second variations of Brownian motion are due to its fractal
nature. Imagine a single Brownian path in which we observe the value of Wt only at fixed time
points t0, . . . , ti , . . . , tN . The small jumps [Wi − Wi−1] are by definition independent of each
other and have expected values of zero. An estimate of the variance of the Brownian motion
can be obtained from the sample of observations on this one path:

VN = Est. var[WT ] = N

N − 1

N∑
i=1

(Wi − Wi−1)2 ≈ QN

This estimated variance will be more or less accurate, depending on luck. If we now increase
the number of readings 10-fold, we can increase the accuracy of the estimate. But remember
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that the Brownian path is fractal: we can improve the accuracy of VN indefinitely by taking
more and more readings, until it converges to the variance of the distribution.

The infinite first variation implies that a Brownian motion moves over an infinite distance
in any finite time period. It also comes about because of the fractal nature of Brownian mo-
tion. We observe the motion of a particle, measuring the distance moved at discrete time
intervals. As we zoom in, measuring the distances traveled at smaller and smaller time in-
tervals, the “noisiness” of the motion never decreases. In the limit of infinitesimally close
observations, the distance measured becomes infinite. In more graphic terms, the vibration of
Brownian motion is so intense that it moves a particle over an infinitely long path in any time
period.
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Transition to Continuous Time

22.1 TOWARDS A NEW CALCULUS

(i) Our objective is to develop a set of computational rules for Brownian motion, analogous to
the differential and integral calculus of analytical functions. The motivation for this search is
evident if we pull together some of the results of the last couple of chapters. The martingale
representation theorem which was proved in Chapter 20 for a binomial process states that if
xi is a discrete martingale, then any other discrete martingale (under the same measure) yi can
be written as

yi − yi−1 = ai−1 (xi − xi−1)

by a suitable choice of the random variable ai−1. By iteration, this last equation may be written

yN − y0 =
N∑

i=1

ai−1 (xi − xi−1)

This relation is quite general for any two martingales under the same measure so we may also
write

yN − y0 =
N∑

i=1

ai−1 �Wi

where Wi is a standard Brownian motion Wt at time t = iT/N , �Wi = Wi − Wi−1 and
ai−1is an Fi−1-measurable random variable.

So why not simply follow the practice for analytical calculus and write

yN − y0 = lim
N→∞

N∑
i=1

ai−1 �Wi →
∫ T

0
at dWt (22.1)

Hey presto! We’ve made calculus for stochastic processes; maybe. If Wt were an analytical
function of t, the integral in the last equation would be solved by first making the substitution
dWt → (dWt/dt)dt , so that the variable of integration corresponds to the limits of integration.
But what happens when Wt is a Brownian motion?

(ii) Let’s take a trip back to pre-college calculus to see what there is in the tool-box that could
be of use in dealing with Brownian motion. The study of traditional calculus starts with the
following concept:

dy

dx
= lim

δx→0

δy

δx
converges smoothly to some value

But as we saw in the last chapter, Brownian motion is random and fractal, so that dWt/dt is
indeterminate. For analytic functions, dy/dx can be considered the slope of the function y(x).
This only works if y(x) is smooth and has no “corners”. But Brownian motion is a function
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which is corners everywhere with no smooth bits in between! Alas, traditional differential
calculus is not really going to be much use in developing stochastic theory.

y(x)

y(x +

AREA = A(x) dA(x)

x x + dx

dx)

Figure 22.1 Analytical calculus

(iii) Integral calculus is first introduced to students as
the reverse of differentiation. If a Brownian motion
cannot be differentiated, it does not seem likely that
this approach will help us much in applying integral
calculus to stochastic theory.

However, integration may alternatively be ap-
proached as a form of summation. In Figure 22.1,
y(x) is an analytical function of x and A(x) is the
area under the curve of y(x) between 0 and x. If x is
increased by δx, A(x) increases by δA; but from the
formula for the area of a trapezium:

δA = 1
2 (y(x) + y(x + δx)) δx

Using limδx→0 y(x + δx) → y(x) allows us to write dA/dx = y(x), or reverse differentiating
and applying the concept of limits of integration gives

A(X ) =
∫ X

0
y(x) dx

This is basically how we first learned that the area under a curve is obtained by integrating
the function of the curve. However, instead of relying on this idea of integration as reverse
differentiation, we could approach the problem the other way around. Suppose the area A(X)
were sliced up into many trapeziums, each of width δx. The total area of all these trapeziums
could then be written

AN =
N∑

i=1

1
2 (y(xi ) + y(xi−1)) (xi − xi−1) where N = X

δx

The definite integral could therefore be defined as

A(X ) =
∫ X

0
y(x) dx = lim

N→∞;δx→0
AN = lim

N→∞;δx→0

N∑
i=1

1
2 (y(xi ) + y(xi−1)) (xi − xi−1)

For the purposes in hand, this formulation has the great advantage of defining integration
without having to use the word “differentiation”, which we know is a non-starter for stochastic
processes.

(iv) The Ito Integral: This last equation is similar to equation (22.1) if we replace the continuous
variable x with the Brownian motion Wt . The most obvious difference in appearance is that here
we have an integrand 1

2 (y(xi ) + y(xi−1) while the corresponding stochastic term is ai−1. If the
stochastic integral contained a term 1

2 (ai + ai−1), the summation would not be a martingale,
and we wish to preserve this useful property. The stochastic integral is therefore defined as
follows:

I =
∫ T

0
at dWt = lim

δN→∞;δt→0
IN

250



22.1 TOWARDS A NEW CALCULUS

where

IN =
N∑

i=1

ai−1 (Wi − Wi−1) =
N∑

i=1

ai−1�Wi (22.2)

Such an integral is known as an Ito integral. If we had gone with an alternative definition and
used the term 1

2 (ai + ai−1), we would have defined an alternative entity known as a Stratonovich
integral, which has uses in some areas of applied stochastic theory but not option theory. It
will not be pursued further here.

Figure 22.2 illustrates the term IN which was defined in the last paragraph as
IN =∑N

i=1 ai−1(Wi − Wi−1). Each slice of area under the graph for ai is a rectangle whose
height is ai−1, which is the value at the beginning of the time interval. Note the difference
between this definition and the areas used either for the Stratonovich integral or the Riemann
integral. In the case of the Riemann integral for an analytic function, we actually get the same
answer whether we take the height of the rectangle at the beginning, mid-way or ending value
of at over the interval (ti − ti−1). But in the stochastic case it makes a critical difference: only
if we use the beginning value will the martingale property of the integral be preserved.

ia

a

Wi

i-1

Wi-1

Figure 22.2 Ito integrals

(v) The fact that we have defined an Ito integral does not in itself move things far forward. It
may not converge to anything definite and we have no idea as yet of its properties or rules
of manipulation. Certainly, there is no reason to assume that it works the same as Riemann
integration; in fact, it does not. The rules of this calculus must be derived by first principles
from its definition.

In some ways it is a pity that similar vocabulary is used both for Riemann and stochastic
integrals. If the latter were called slargetni, a lot of the confusion that besets a beginner in
this field would be avoided. He would always be aware that slargetni are defined as limits of a
random process while integrals are the familiar friends of pre-college days. The understandable
temptation to think in Riemann terms as soon as an integral sign is spotted would be avoided.

(vi) The first task is to make sure that the expression in equation (22.2) converges to something
meaningful. But before we do this, we have to define what we mean by the word “converges”.
When dealing with analytical functions, the concept of convergence is usually fairly straight-
forward. But when random variables converge, several different definitions could apply: for
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22 Transition to Continuous Time

example, the random variable yi,N = [(N − 1)/N ] xi converges to xi as N → ∞ in rather the
same way that an analytical function converges. Alternatively, yi,N might be said to converge to
xi if E[yi,N ] → E[xi ] as N → ∞. Or again, yi,N might be said to converge to xi if the limiting
probability distribution of yi,N approaches the distribution of xi as N → ∞.

The particular form of convergence used in defining an Ito integral is the mean square con-
vergence which was encountered in Section 21.3(i) in connection with the quadratic variation
of Brownian motion. A more rigorous definition of an Ito integral than was given by equation
(22.2) is then as follows:

if IN =
N∑

i=1

ai−1 (Wi − Wi−1) and lim
N→∞

E[(IN − I )2] → 0

then I is an Ito integral and is conventionally written as

I =
∫ T

0
at dWt

Why, the reader might ask, use this definition of convergence rather than any of the other
possibilities available? The answer, quite simply, is that this rather abstract form of convergence
gives some useful results while other, more obvious forms of convergence do not.

22.2 ITO INTEGRALS

(i) The simplest Ito integral is the case where the ai are constant and equal to unity. The Ito integral
is then defined by

lim
N→∞

E


{ N∑

i=1

(Wi − Wi−1) − I

}2

 = 0

In this trivial case, we can write

lim
δt→0;N→∞

N∑
i=1

(Wi − Wi−1) = lim
δt→0

(WN − W0) → WT − W0

The mean square convergence criterion is clearly satisfied and the stochastic integration rules
appear to mirror the Riemann rules, i.e.

∫ T
0 dWt = WT − W0.

(ii) The quadratic variation of a Brownian motion over a single path was shown in Section 21.3(i)
to be given by

Qvar [Wt ] = lim
δt→0; N→∞

N∑
i=1

(Wi − Wi−1)2 = T

It was also shown that var[Qvar[Wt ]] = E[{Qvar[Wt ] − T }2] → 0. Thus in a mean square

252



22.2 ITO INTEGRALS

convergence sense, we can write∫ T

0
(dWt )

2 = T =
∫ T

0
dt or maybe (dWt )

2 = dt (22.3)

This relationship looks rather bizarre to students who are unfamiliar with stochastic calculus,
but it has been emphasized repeatedly that stochastic calculus is not Riemann calculus with
the symbols changed. Remember that it arises because the quadratic variation of Brownian
motion is not zero as it would be for an analytic function.

(iii) We now turn our attention to a slightly more complex Ito integral, where the difference between
Ito and Riemann rules becomes apparent. Consider the following Ito integral:

I =
∫ T

0
Wt dWt = lim

δN→∞;δt→0

N∑
i=1

Wi−1(Wi − Wi−1) (22.4)

A bit of algebra makes this more manageable:

N∑
i=1

(Wi − Wi−1)2 =
N∑

i=1

W 2
i − 2

N∑
i=1

Wi Wi−1 +
N∑

i=1

W 2
i−1

Using W0 = 0 and
∑N

i=1 W 2
i = W 2

N +∑N
i=1 W 2

i−1 on the right-hand side of the last equation
gives

N∑
i=1

(Wi − Wi−1)2 = W 2
N + 2

N∑
i=1

(
W 2

i−1 − Wi Wi−1
)

= W 2
N − 2

N∑
i=1

Wi−1(Wi − Wi−1)

Substituting this result in equation (22.4) simply gives

I =
∫ T

0
Wt dWt = lim

δt→0;N→∞
(Wi − Wi−1)

= 1
2 W 2

N − 1
2 lim

δt→0;N→∞

N∑
i=1

(Wi − Wi−1)2

The last term of this equation is just the quadratic variation of a Brownian motion so that we
can write ∫ T

0
Wt dWt = 1

2 W 2
T − 1

2 T (22.5)

The unexpected term 1
2 T is due to the non-vanishing quadratic variation of the Brownian

motion.

(iv) We now consider an Ito integral with a general integrand

I =
∫ T

0
at dWt = lim

δN→∞;δt→0
IN
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where

IN =
N∑

i=1

ai−1(Wi − Wi−1)

The quadratic variation of IN is the sum of the quadratic variations over each time interval ti−1

to ti . But by the construction of an Ito integral, ai is constant over such an interval so that

Qvar [Ii − Ii−1] = a2
i−1 Qvar [Wi − Wi−1] = a2

i−1 (ti − ti−1)

Summing over all intervals and taking the limit gives

Qvar [I ] = Qvar[ lim
δt→0;N→∞

IN ] =
∫ T

0
a2

t dt (22.6)

(v) The Ito integral was constructed in such a way that that it is always a martingale. Therefore

E[I ] = E

[∫ T

0
at dWt

]
= 0

var[I ] = lim
δt→0; N→∞

E
[
I 2

N

] = lim
δt→0; N→∞

E


{ N∑

i=1

ai−1 (Wi − Wi−1)

}2



= lim
δt→0; N→∞

E

[
N∑

i=1

a2
i−1 (Wi − Wi−1)2

]

+ 2 lim
δt→0; N→∞

E

[
N∑

i = j

ai−1a j−1 (Wi − Wi−1) (W j − W j−1)

]

As in the last subsection, the first term in this expression for the variance of I simply gives∫ T
0 a2

t dt . The second part, consisting of cross terms, simply drops out because of the tower
property and the martingale property of Brownian motion. For example

E [a2a8 (W3 − W2) (W9 − W8)|F0]
= E [a2a8 (W3 − W2) E [ (W9 − W8)|F8]|F0] = 0

We are therefore left with the result

E

[{∫ T

0
at dWt

}2
]

= E

[∫ T

0
a2

t dt

]
(22.7)

(vi) The construction of the integrals above demands mean square convergence. However, we must
guard against one possibility: we could have lim

δt→0; N→∞
E[(IN − I )2] → 0 while at the same

time E[I 2
N ] and E[I 2] separately go to infinity in such a way that their divergences cancel out.

A supplementary condition is therefore placed on the function at if the Ito integral is to be
considered sound:

E

[{∫ T

0
at dWt

}2
]

= E

[∫ T

0
a2

t dt

]
< ∞ (22.8)
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This is known as the square integrability condition. The significance of this condition for
option theory is explained in the next section.

22.3 DISCRETE MODEL EXTENDED TO CONTINUOUS TIME

The key results of Chapter 20 which were introduced within a discrete time model are now
re-stated in the framework of continuous time stochastic calculus.

(i) Recall that the Ito integral was constructed in such a way that it is always a martingale. The
martingale difference equations which were written in Chapter 21 in the form

fi − fi−1 = ai−1 (Wi − Wi−1)

may therefore be extended to continuous time in the form

fT − f0 = lim
δN→∞;δt→0

n∑
i=1

a(ti−1) (W (ti ) − W (ti−1)) =
∫ T

0
at dWt

In our study of options, we often come across relationships of the following form, known
generally as semi-martingales:

fT − f0 =
∫ T

0
bt dt +

∫ T

0
at dWt

Use is frequently made of the fact that in such a relationship, ft is only a martingale if the
integral with respect to t is equal to zero.

(ii) The martingale representation theorem tells us that any martingale Yi can be written in terms
of another martingale Xi as

YN − Y0 =
N∑

i=1

ai−1(Xi − Xi−1)

Of specific interest to us is the fact that any continuous martingale can be written in terms of
a Brownian motion. In continuous time this is written

YT − Y0 =
∫ T

0
at dWt

subject to the square integrability condition.

(iii) In Section 21.4 it was explained how the arbitrage theorem leads to the conclusion that there
exists some measure under which both the discounted stock and option prices are martin-
gales. In Section 21.5 it was shown that the discounted value of a self-financing portfolio is
a martingale under the same probability measure. The martingale representation theorem of
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22 Transition to Continuous Time

the last subsection allows a discounted option price to be written in any one of the following
ways:

f ∗
T − f ∗

0 =




∫ T

0
at dV ∗

t∫ T

0
bt dS∗

t∫ T

0
ct dW ∗

t

since a discounted portfolio value V ∗
t , a discounted stock price S∗

t and a Brownian motion Wt

are all martingales. Once again, the square integrability condition applies to each of the three
integrals.

(iv) A Fundamental Pricing Formula: The fact that f ∗
t is a martingale leads us to one of the most

important results for pricing options. By definition EP [ fT B−1
T |F0] = f ∗

0 , or with constant
interest rates

f0 = e−rT EP [ fT |F0]

The superscript P is included to indicate that when moving to the continuous case, we must
still make the distinction between pseudo-probabilities and real-world probabilities. This topic
merits a chapter of its own later (Chapter 24).

(v) Free Lunches do Exist: The square integrability condition should really be stated virtually
every time a stochastic integral is mentioned. In practice, most derivatives practitioners simply
recite the condition as a mantra whenever seems appropriate. Of course, pure mathematicians
find the whole issue rivetingly interesting. So in tangible terms, what sort of thing are we likely
to miss if we ignore the condition?

A good illustration is provided by equation (20.6) for the discounted value of a self-financing
portfolio in terms of the discounted stock price:

V ∗
t − V ∗

i−1 = αi−1(S∗
i − S∗

i−1)

The arbitrage theorem tells us that S∗
i is a martingale so that in this discrete case, the expected

value of each side of the last equation must be zero. A strategy is a set of rules for changing
the αi at each step depending on the value of S∗

i . A simple strategy is one where the αi are
changed a finite number of times, i.e. a discrete model. A non-simple strategy is one where αi

is changed continuously.
This part of the book has been built on the foundations of the no-arbitrage hypothesis,

which says that no simple strategy can produce a free lunch (defined as a situation where
E[V ∗

i − V ∗
i−1] > 0). But is it possible that in extrapolating to the continuous case, some loop-

hole has been left open which allows us to construct a strategy which does produce a free
lunch? Surprisingly, the answer is yes.

Consider the following simple betting game: I put up a stake of $1 and flip a coin; if I win
I get back $2 and if I lose I forfeit my stake. Play the game repeatedly. My strategy, based on
double or quits, is easiest to follow schematically:
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22.3 DISCRETE MODEL EXTENDED TO CONTINUOUS TIME

(0) borrow $1
      bet $1

win

lose

get $2 back;
repay $1 accumulated borrowing

play again

stop

(1) borrow $2
      bet $2

win

lose

get $4 back;
repay $3 accumulated borrowing

play again

stop

(n) borrow 
      bet 

win

lose

get             back;  
repay                   accumulated 
borrowing

play again

stop)12$( 1n −+
n2$

n2$

1n2$ +

As a matter of linguistic interest, this strategy was popular amongst casino goers in the eigh-
teenth century and was known as The Martingale. Clearly, the potential cumulative profit at
each step is only $1 although the cumulative losses grow rapidly. If I can be sure of playing
the game forever and I have unlimited borrowing capacity, I can be sure of winning my $1 at
some point. The trouble is that my accumulated loss just before my win will be $(2n+1 − 1). In
terms of statistical parameters, we can say that as n → ∞, the expected value of the outcome
is a gain of $1, but the variance of the outcome is infinite.

In terms of portfolios and stock prices, we could invent an analogous game. Assuming we
start with no funds, the value of a self-financing portfolio in discrete time can be written

V ∗
N =

n∑
i=1

αi−1(S∗
i − S∗

i−1)

Assuming a binomial type of model, one could select αi at each mode such that in the event
of an up-move, all previous debt is repaid and a profit of $1 is left over. In the event of
a down-move the procedure is repeated. In the continuous limit and over a time period T,
this sort of game might be played as follows: structure a leveraged, self-financing, zero-cost
portfolio.

� If we are ahead at time T/2, stop; otherwise leverage further.
� If we are cumulatively ahead at time 3T/4, stop; otherwise leverage further.
� If we are cumulatively ahead at time 7T/8, stop; otherwise leverage further.

. . .
� If we are cumulatively ahead at time (2n − 1) T/2n , stop; otherwise leverage further.

. . .
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22 Transition to Continuous Time

We would be left with the same result as when we flipped coins, i.e. a free lunch but an infinite
variance for V ∗

T . If we wish to exclude such cases, we impose the condition

var[V ∗
N ] = E

[
V ∗2

N

] = E

[{∫ T

0
αt dWt

}2
]

< ∞

or using equation (22.7)

E

[∫ T

0
α2

t dt

]
< ∞

which is the ubiquitous square integrability condition. The reader is left to judge whether any
of the derivatives problems he is called on to solve will involve the kind of pathological market
strategies just described. Most people in the trade obediently repeat the condition in the right
places and give it little further thought.
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23

Stochastic Calculus

23.1 INTRODUCTION

(i) The last couple of chapters were heavily mathematical with not much reference to option
theory. Brownian motion was investigated in some detail and we developed a form of calculus
which could be used to analyze this process. We defined the Ito integral

∫ T
0 at dWt , which was

constructed to be a martingale, and we derived the following three explicit results from first
principles:∫ T

0
dWt = WT ;

∫ T

0
WT dWt = 1

2
W 2

T − 1

2
T ;

∫ T

0
(dWt )

2 = T (23.1)

The second and third results were rather surprising and reflect the fact that the quadratic varia-
tion of Brownian motion is equal to T, and not zero as it would be for a differentiable function.

(ii) The reader will be disappointed (or perhaps relieved) to learn that we cannot go very much
further in deriving explicit integrals. In classical calculus, virtually any continuous function can
be differentiated from first principles, i.e. putting x → x + δx as the argument of a function,
expanding and then setting O[δt2] → 0. Not all functions can be integrated analytically; but
Riemann integration can be equated to reverse differentiation, so that a large library of standard
integrals has been established. Differentiation with respect to time has no meaning in stochastic
calculus, so this approach is not available. The reader’s first reaction to this news must be to
wonder whether it was worth plowing through all the stuff in the last two chapters just to derive
a calculus which is so puny that it can only manage three integrals. But thanks to Ito’s lemma
which is discussed next, some powerful calculation techniques do emerge.

(iii) This brings us to an important definitional point: the whole motivation for these chapters
on stochastic theory is that we believe that a stock price movement can be written as δSt =
a(St , t)δt + b(St , t)δWt . Presumably, in the limit of infinitesimal time intervals, this could
be written as the differential equation dSt = a(St , t)dt + b(St , t)dWt . The reader might have
noticed that books on stochastic theory (including this one) have sections entitled Stochastic
Differential Equations, which deal with equations of this type. Yet in the last chapter it was
emphasized that differential calculus does not apply to Brownian motion; so what’s going on?

Let us ignore the atδt term for the moment, as this is not where the difficulty arises, and
write for b(St , t). The position is summarized as follows:

(A) The intuitive relationship δSt = bt δWt is perfectly respectable: a small Brownian motion
drives a small movement in St .

(B) If you want to make δSt and δWt very, very, very small and write this as dSt = bt dWt ,
that’s OK. You can even write dSt/dWt = bt , which is discussed in the next subsection.

(C) You can certainly rewrite this relationship as ST − S0 = ∫0
T d St = ∫0

T bt dWt . We have,
after all, just spent a chapter defining exactly what this integral means.

(D) But it is absolutely forbidden to put
∫

0
T bt dWt = ∫ T

0 bt
dWt
dt dt .
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The punch-line is that when we see the differential equation dSt = at dt + bt dWt , what is
really meant is

ST − S0 =
∫

0

T

at dt +
∫

0

T

bt dWt

where the first integral is a Riemann integral and the second integral is the Ito integral which
was defined in Chapter 22. The differential form is mere shorthand and should immediately
be hidden if a serious mathematician drops by. The justification for this shorthand is that first,
it is a simple and intuitive representation of a process and second, everybody else does it. In
this spirit of imprecision, we can state that dSt = bt dWt is a martingale.

(iv) The next section uses the properties of differentials extensively, so at the risk of belaboring
the obvious, it is worth reviewing when differential calculus can be used and when not. A
stock price St is stochastic, as is the price of the derivative of the stock f (St ). But despite
the fact that they are both stochastic, f (St ) is a well-behaved, differentiable function of St . In
fact, ∂ f (St )/∂St , is just the delta of the derivative. Similarly, ∂ f (St )/∂t is well defined, even
though St behaves randomly over an infinitesimal time interval dt . The reason is that the partial
differential is defined as the limit of δ ft divided by δt while holding St constant. Although
the partial derivatives of f (St ) with respect to both St and t are meaningful, dSt/dt does not
make the grade. It is impossible to attach a meaning to this when we have no idea whether the
next move in St will be up or down, or by how much. Similarly, d f (St )/dt is meaningless; this
seems a little surprising since the partial derivative was well behaved, but remember that the
total derivative does not hold St constant over the infinitesimal time interval. Finally, although
d f (St , t)/dt is not allowed, a close relative defined by

A f (St , t) = lim
δt→0

E[ f (St + δS, t + δt) |Ft ] − f (St , t)

δt

does have a respectable place in stochastic calculus. We revisit this in Section 23.8 .

23.2 ITO’S TRANSFORMATION FORMULA (ITO’S LEMMA)

(i) In general, a small increment in the price of a derivative may be given by a Taylor expansion
as follows:

δ f (St , t) = ∂ ft

∂t
δt + ∂ ft

∂St
δSt + 1

2

∂2 ft

∂S2
t

(δSt )
2

+ 1

2

∂2 ft

∂t2
(δt)2 + 1

2

∂2 ft

∂S∂t
(δSt )(δt) + · · ·

In the limit of infinitesimal δt we would expect to throw away all terms higher than the first in
δt or δWt . However, if the stock price can be written dSt = a(St , t) dt + b(St , t) dWt , then the
third term in the above Taylor expansion will contain a term of the general form At (dWt )2, or
in its integral form ∫ T

0
At (dWt )

2 = lim
δN→∞; δt→0

N∑
i=1

Ai (Wi − Wi−1)2

This is Brownian quadratic variation, which unlike an analytic quadratic variation, does not
vanish to zero in the limit. (dWt )2 is just not small enough to ignore in the Taylor expansion,
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23.3 STOCHASTIC INTEGRATION

and in the limit of mean square convergence, we need to make the replacement (dWt )2 → dt
which was explained in Section 22.2(ii). Our Taylor expansion was of course written in terms of
(δSt )2, which leads to additional terms a2(dt)2 and ab dSt dt , but these can be safely dropped
as they are O[(δt)2] and O[(δt)3/2].

(ii) Ito’s Lemma: The arguments in the last section have been couched in terms of a derivative
which is a function of a stock price. The conclusions apply more generally to any function of
a Brownian motion. For future reference, the results can be stated as follows.

If a stochastic variable, driven by a Brownian motion, follows the process

dxt = a (xt , t) dt + b (xt , t) dWt

Then a differentiable function of xt follows a process which may equivalently be written in
either differential or integral form:

d ft = ∂ ft

∂t
dt + ∂ ft

∂xt
dxt + 1

2

∂2 ft

∂x2
t

(dxt )
2

= ∂ ft

∂t
dt + ∂ ft

∂xt
dxt + 1

2
b2

t

∂2 ft

∂x2
t

dt

fT − f0 =
∫ T

0

{
∂ ft

∂t
+ at

∂ ft

∂xt
+ 1

2
b2

t

∂2 ft

∂x2
t

}
dt +

∫ T

0
bt

∂ ft

∂xt
dWt (23.2)

Remember that from the definition of an Ito integral, the last term of this second equation is a
martingale.

Ito’s lemma describes the stochastic process followed by ft , when ft is a function of a
stochastic process xt , which in turn is a function of the Brownian motion Wt . A simplified
form of the lemma connecting ft and Wt directly is obtained by putting at = 0 and bt = 1:

fT − f0 =
∫ T

0

1

2

∂2 ft

∂W 2
t

dt +
∫ T

0

∂ ft

∂Wt
dWt (23.3)

23.3 STOCHASTIC INTEGRATION

At the beginning of this chapter it was observed that a stochastic integral cannot be considered
the reverse of a stochastic differential with respect to time, simply because the latter does
not exist. The result is that stochastic calculus can never build up the battery of standard
integrals possessed by analytical calculus. In fact, the store of standard results is so poor that
any insights are gratefully received. Ito’s lemma confirms in a very simple manner a couple
of the results we derived from first principles and gives us a procedure for integrating by
parts.

(i) Using equation (23.3), let ft = Wt . Straightforward substitution gives

fT − f0 = Wt =
∫ 2

0
dWt

which is the simplest integral, derived from first principles in Section 22.2(i).
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(ii) A slightly more complex integral, derived in Section 22.2(iii), is obtained by putting ft = W 2
t .

Again, substituting this in equation (23.3) gives

fT − f0 = W 2
T =

∫ T

0
dt +

∫ T

0
2Wt dWt

or ∫ T

0
Wt dWt = 1

2
W 2

T − 1

2
T

(iii) Let xt = WT and ft = xt g(t) where g(t) is not dependent on xt , i.e. is non-stochastic. Then
equation (23.2) becomes

fT − f0 = WT g(t) =
∫ T

0
xt

∂g(t)

∂t
dt +

∫ T

0
g(t) dWt

which immediately gives a stochastic form of integration by parts∫ T

0
g(t) dWt = WT g(T ) −

∫ T

0

∂g(t)

∂t
Wt dt (23.4)

23.4 STOCHASTIC DIFFERENTIAL EQUATIONS

(i) The simplest stochastic differential equation (SDE) of interest in option theory has constant
coefficients:

dxt = a dt + σ dWt

which may be simply integrated to give

xT − x0 = aT + σ WT

From this very simple expression for xT , it is clear that

E [xT ] = x0 + aT and var [xT ] = σ 2 T

(ii) Stock Price Distribution: The most frequently used SDE for a stock price movement, which
underlies Black Scholes analysis, is the following:

dSt = µSt dt + σ St dWt µ, σ constant

Let ft = ln St ; then equation (23.2) (Ito’s lemma) becomes

fT − f0 − ln
ST

S0
=
∫ T

0

(
µ − 1

2
σ 2

)
dt +

∫ 2

0
σ dWt =

(
µ − 1

2
σ 2

)
T + σ WT

or

ST = S0 e(µ− 1
2 σ 2)T +σ WT

which is the well-known result of equation (3.7). The expectation and variance for ST were
found explicitly in Section 3.2 by plugging in the explicit normal distribution and slogging
through the integral. We are now able to achieve the same result with a lighter touch by using
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Ito’s lemma. From the last result

E

[
ST

S0

]
= e(µ− 1

2 σ 2)T E[eσ WT ] (23.5)

Define a new variable yt = eσ Wt and use equation (23.3) to give

yT − y0 =
∫ T

0

1

2
σ 2 yt dt +

∫ T

0
σ yt dWt

Both of the integrals in this equation contain random variables. Take the expectation at time
zero of the equation, writing E [ yt | F0] = Yt , and note that the expected value of the Ito
integral is zero (martingale property):

YT − Y0 =
∫ T

0

1

2
σ 2Yt dt

The random variables have been eliminated from this equation by taking time zero expectations;
the solution is YT = e

1
2 σ 2T which can be verified by substituting back in the last equation.

Substituting this solution back in equation (23.5) gives

E

[
ST

S0

]
= eµ T

Precisely the same technique, using an intermediate variable, allows us to write

E

[
ST

S0

]2

= e2(µ− 1
2 σ 2)T E[e2σ WT ] = e(2µ+σ )T

giving a variance

var

[
ST

S0

]
= E

[(
ST

S0

)2
]

− E2

[
ST

S0

]
= e2µT (eσ 2 T − 1)

From the equation for ln St/S0 at the beginning of this subsection, it is clear that
var[ln ST /S0] = σ 2T precisely. We may, however, make the approximation var[St/S0] ≈ σ 2 δt
for small δt , by expanding the full expression to first order in δt .

(iii) In the last subsection we looked at the SDE with constant µ and σ . Suppose these parameters
were functions of St and t : our results leading to equation (24.3) would simply become

ST = S0 exp

[∫ T

0

{
µ(St , t) − 1

2
σ 2(St , t)

}
dt +

∫ T

0
σ (St , t) dWt

]

(iv) An Interesting Martingale: As a further exercise and because we need the result in the next
chapter, consider the process

dxt = −1

2
φ2

t dt − φt dWt

Define ξt = ext and use Ito’s lemma to give

ξT − ξ0 = −
∫ T

0
φtξt dWt
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or in differential shorthand

dξt

ξt
= − φt dWt

clearly, ξt is a martingale.

(v) Ornstein–Uhlenbeck Process: This process, which is of interest in the study of interest rates,
has the following SDE:

dxt = −axt dt + σ dWt

The stochastic term is the same as before, but the drift term is more interesting: the negative
sign and the proportionality to xt means that the larger this term becomes, the larger the effect
of this term in pushing xt back towards zero.

While it is observed in finance that a stock price is usually well described by Brownian
motion, interest rates usually move within a fairly narrow band. We don’t often come across
interest rates of 50% (at least in markets where we want to do derivatives), but we often
see stock prices that start at $10 and after a few years have reached $100. Interest rates are
assumed to display mean reversion. They do not of course mean revert to zero (as implied by
the Ornstein–Uhlenbeck process), but we stick with this most basic process for simplicity of
exposition.

Let’s try out the function ft = xt eat . Ito’s lemma then gives

fT − f0 = xT eaT − x0 =
∫ T

0
σ eat dWt

or

xT = x0 e−aT + e−aT σ

∫ T

0
eat dWt

We are not able to solve the integral explicitly, but we can nevertheless obtain some useful
results. The integral is a martingale, so taking expectations of the last equation and of its square
gives

E

[
xT

x0

]
= e−aT

E

[
xT

x0

]2

= e−2aT + e−2aT σ 2

x2
0

E

[{∫ T

0
eat dWt

}2
]

The cross term in this last equation has disappeared on taking expectations. Substituting for
the squared integral from equation (22.7) gives

E

[(
xT

x0

)2
]

= e−2aT

{
1 + σ 2

x2
0

∫ T

0
e2at dt

}

var

[
xT

x0

]
= E

[(
xT

x0

)2
]

− E2

[
xT

x0

]
= σ 2

2ax2
0

{1 − e−2aT }
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23.5 PARTIAL DIFFERENTIAL EQUATIONS

By now, the reader has probably thought to himself that this stochastic calculus is all very
well, but there is not much in the way of concrete answers (i.e. numbers) to real problems.
One of the main bridges between the rather abstract theory and “answers” is the relationship
between stochastic differential equations and certain non-stochastic partial differential equa-
tions (PDEs). Partial differential equations may be hard to solve analytically, but they can be
forced to yield tangible results using numerical methods.

(i) Feynman–Kac Theorem: The basic trick in deriving the PDEs relies very simply on Ito’s
lemma. Take any well-behaved function Mt of a process xt whose stochastic differential
equation is dxt = a(xt , t) dt + b(xt , t) dWt . Ito’s formula [equation (23.2)] gives the process
for Mt , and this is a martingale if and only if the drift term (the integral with respect to t) is
zero. This implies that

∂ Mt

∂t
+ a(xt , t)

∂ Mt

∂xt
+ 1

2
b(xt , t)

∂2 Mt

∂x2
t

= 0 (23.6)

The PDE approach consists of setting up functions which are martingales and then using Ito’s
lemma to obtain PDEs for these functions.

(ii) The first and most obvious choice for a martingale on which to try out this method is the
discounted derivative price f ∗

t = B−1
t ft . Substituting f ∗

t for Mt in equation (23.6) gives the
following PDE for ft :

∂ ft

∂t
+ a(xt , t)

∂ ft

∂xt
+ 1

2
b(xt , t)

∂2 ft

∂x2
t

= B−1
t

∂ Bt

∂t
ft

Take the Black Scholes case where xt = St , a(xt , t) = r St , b(xt , t) = σ St and Bt = er t . The
last equation then simply becomes the Black Scholes partial differential equation which was
first given by equation · · ·

∂ ft

∂t
+ r St

∂ ft

∂St
+ 1

2
σ 2S2

t

∂2 ft

∂S2
t

= r ft

Making the drift term a(xt , t) equal to the interest rate takes a bit of explanation, which is
deferred until the next chapter; but all this will be obvious to anyone who is familiar with
the risk-neutrality arguments of Chapter 4. This very slick derivation of the Black Scholes
equation is shown here in order to demonstrate the power of the PDE approach to martingales.

(iii) A Martingale Machine: Having used the most obvious martingale ( f ∗
t ) to derive the Black

Scholes equation in the last section, where should we go for the next martingale? It turns out
that there exists a machine for cranking out martingales on demand.

0 t s T

We are used to making the distinction between a
random variable xt and its expected value E〈xt 〉, which
is not a random variable. But expectations can be
constructed in such a way that they are also random
variables: suppose xt is a stochastic process which we are anticipating at time 0. Then E [ xt | F0]
and E [ xT | F0] are clearly not random variables; but E [ xT | Ft ] definitely is a random variable
when viewed from time 0, depending as it does on some future unknown information set Ft .
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23 Stochastic Calculus

Define the function f (xt , t) = E[φ(xT ) | Ft ] where φ is a well-behaved function of xT . From
this definition and the tower property we have

E[ f (xs, s) | Ft ] = E[E[φ(xT ) | Fs] | Ft ] = E[φ(xT ) | Ft ] = f (xt , t) (t < s) (23.7)

In other words, your best guess of what your best guess will be in the future has to be the same
as your best guess now. Rather obvious perhaps, but it does generate more candidates for the
partial differential equation of the last paragraph! An important application of this principle is
given next.

(iv) Kolmogorov Backward Equation: The general process from which the PDE was constructed
was dxt = a(xt , t) dt + b(xt , t) dWt . In terms of the probability distributions of classical statis-
tics, the conditional expectations of the last subsection may be written

f (xt , t) = E〈φ(xT , T ) |Ft 〉 =
∫

all xT

φ(xT , T )F(xT , xt ; t) dxT

where F(xT , xt ; t) is the probability density function. Since F(xT , xt ; t) is the only part of the
integral which is a function of xt or t , we can write simply

∂ f (xt , t)

∂xt
=
∫

φ
∂ F

∂xt
dxt ;

∂2 f (xt , t)

∂x2
t

=
∫

φ
∂2 F

∂x2
t

dxt ;
∂ f (xt , t)

∂t
=
∫

φ
∂ F

∂τ
dxt

Substituting this back into equation (23.6) immediately gives the backward equation, which
was derived using other techniques in Appendix A.3:

∂ F(xt , t)

∂t
+ a(xt , t)

∂ F(xt , t)

∂xt
dxt + 1

2
b(xt , t)2 ∂2 F(xt , t)

∂x2
t

dt = 0 (23.8)

23.6 LOCAL TIME

The material in this section is used to analyze the stop-go paradox in Section 25.3 and may be
omitted until then.

(i) Let us try to apply Ito’s lemma to the function ft = max[0, Wt − X ] = (Wt − X )+. This is
stretching things rather, as one of the preconditions of Ito’s lemma is that the function should
be “well behaved”, i.e. at least twice differentiable with respect to Wt . This appears quite at
odds with a sharp cornered “hockey-stick” function such as (Wt − X )+. However, the first and
second differentials of this function can be defined in terms of Heaviside functions and Dirac
delta functions, as shown in equations A.7(ii) and (iii) of the Appendix. The simplified form
of Ito’s lemma [equation (23.3)] is

fT − f0 =
∫ T

0

∂ ft

∂Wt
dWt + 1

2

∫ T

0

∂2 ft

∂W 2
t

dt (23.9)

fT = (WT − X )+;
∂ ft

∂Wt
= 1[X<Wt <∞];

∂2 ft

∂W 2
t

= lim
ε→0

1

2ε
1[X−ε<Wt <X+ε] = δ(Wt − X )

(ii) The first integral in equation (23.9) appears at first sight to be an adequate representation of
the left-hand side of the equation. Does this mean that the second integral, which comes from
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the quadratic variation term of Ito’s lemma, is identically equal to zero? Let us write

LT (X, ε) =
∫ T

0

1

2ε
1[X−ε<Wt <X+ε] dt (23.10)

and consider LT (X, ε) in the context of the Brownian motion shown in Figure 23.1.

X + e

t1

Wt

t

X − e
X

t2

t4
t3

Figure 23.1 Total time spent by path in region X − ε < Wt < X + ε

During those periods when X − ε < Wt < X + ε, the integrand is just equal to unity; outside
this range, it is equal to zero. The effect of the integration is therefore to add up all those time
periods τi when the Brownian path is between X − ε and X + ε.

As ε → 0 we expect each of the time periods τi to shrink to zero. On the face of it, we might
therefore expect LT to disappear in this limit. But remember the infinite crossing property of
Brownian motion which we described in Section 21.1: as soon as a Brownian path achieves
a value X, it immediately hits that value again an infinite number of times. Although each τi

shrinks to zero, there are an infinite number of them. It may be formally shown that in the limit
ε → 0, LT (X, ε) is well defined, unique and non-zero, although the proof goes a bit beyond
the scope of this chapter.

(iii) Local Time: Using the notation ε = dX/2, equation (23.10) may be rewritten as

LT (X )dX =
∫ T

0
1[X−dX/2<Wt <X+dX/2] dt

where LT (X )dX is the total time that the Brownian motion spends in the range X − dX/2 to
X + dX/2 in the time interval 0 to T. We can generalize the last equation to give the total time
spent by a Brownian path between a and b as

∫ b

a
LT (X )dX =

∫ T

0
1[a<Wt <b] dt

and we can interpret LT (X ) as a density function describing how long the path spends in the
vicinity of X. It is called the local time of the Brownian motion. It might save the reader some
time in the future if he notes that about half the literature uses the notation local time = LT (X ),
while the other half uses local time = 2LT (X ).
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(iv) Using the Dirac delta function representation above, local time may alternatively be written as

LT (X ) =
∫ T

0
δ(Wt − X ) dt

If h(X ) is any reasonable function of X, we can write∫ +∞

−∞
h(X )LT (X )dX =

∫ +∞

−∞
h(X )

∫ T

0
δ(Wt − X ) dt dX

=
∫ T

0
h(Wt ) dt (23.11)

where we have made the heroic, but as it happens perfectly valid, assumption that we can
switch the order of integration.

(v) Tanaka’s Formula: In the limit as ε → 0, the Ito expansion of ft which was given by equa-
tion (23.9) becomes

(WT − X )+ = (W0 − X )+ +
∫ T

0
1[X<Wt <∞] dWt + 1

2
LT (X )

A precisely analogous investigation of (Wt − X )− = min [0, Wt − X ] yields the equation

(WT − X )− = (W0 − X )− +
∫ T

0
1[−∞<Wt <X ] dWt + 1

2
LT (X )

Adding the last two equations together gives the result

| WT − X | = | W0 − X | +
∫ T

0
sign(WT − X ) dWt + LT (X ) (23.12)

where

sign(x)

{+1 x > 0
−1 x ≤ 0

The literature rather loosely refers to any of the last three equations as Tanaka’s formula.

(vi) The local time results derived for simple Brownian motion can be generalized to the semi-
martingale process dxt = at dt + bt dWt . The reasoning is precisely analogous to the above,
and unsurprisingly yields

(xT − X )+ − (x0 − X )+ =
∫ T

0
1[X< xt < ∞] dxt + lim

ε→0

1

2

∫ T

0
b2

t

1

2ε
1[X−ε < xt < X+ε] dt

The last term again results from the quadratic variation term of Ito’s lemma and is interpreted
as a generalized local time. It is written as 1

2�T (X ) and is subject to the same lack of notational
standardization in the literature as simple local time, i.e. some people use �T (X ) and some
2�T (X ) for the same function.

(vii) Using the Dirac delta function notation

�T (X ) =
∫ T

0
b2

t δ(xt − X ) dt (23.13)
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then for any reasonable function h(x) we can write∫ +∞

−∞
h(X )�T (X )dX =

∫ +∞

−∞
h(X )

∫ T

0
b2

t δ(xt − X ) dt dX

=
∫ T

0
b2

t h(xt ) dt (23.14)

(viii) �T (X ) is by its definition a random variable dependent on xt . The last equation may therefore
be used to obtain the expectation of �T (X ) as follows:

E〈�T (X, xt )〉 =
∫ +∞

−∞
p(xt , t)�T (X, xt ) dxt

=
∫ +∞

−∞
p(xt , t)

∫ T

0
b2

t (xt )δ(xt − X ) dt dxt

=
∫ T

0
b2

t (X )p(X, t) dt (23.15)

where p(xt , t) is the probability density that the Brownian path has value xt at time t .

(ix) Using the same reasoning as in subsection (v), Tanaka’s formula for simple Brownian motion
becomes the Tanaka–Meyer formula for Brownian motion with drift:

| xT − X | = | x0 − X | +
∫ T

0
sign(xt − X )dxt + �T (X ) (23.16)

23.7 RESULTS FOR TWO DIMENSIONS

The results of this section are essential for understanding derivatives of two stochastic assets,
but the reader may safely jump ahead until he is ready to tackle this subject.

(i) Joint Variations for Independent Brownian Motions: Consider two Brownian motions W (1)
t

and W (2)
t which are independent of each other. By analogy with the quadratic variation of the

last chapter, the joint variation can be defined as

Jvar
[
W (1)

t , W (2)
t

] = lim
δt→0; N→∞

JN = lim
δt→0; N→∞

n∑
i=1

(
W (1)

i − W (1)
i−1

)(
W (2)

i − W (2)
i−1

)
We use the same reasoning as in Section 21.3, writing W (1)

i − W (1)
i−1 = �W (1)

t and similarly

for �W (2)
i . Then

E [JN ] =
n∑

i=1

E
[
�W (1)

i �W (2)
i

] = 0

since W (1)
i and W (2)

i are independent with mean zero. And

var[JN ] = E
[
J 2

N

] = E

[{ n∑
i=1

�W (1)
i �W (2)

i

}2]
=

n∑
i=1

E
[(

�W (1)
i

)2 (
�W (2)

i

)2]

where the cross terms of the form �W (1)
i �W (2)

i �W (1)
j �W (2)

i (i = j) drop out as they are

independent with zero means. The (�W (1)
i )2 and (�W (2)

i )2 terms are independent with expected
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value δt so that

var[JN ] = (δt) T

which vanishes in the limit δt → 0. In the sense of mean square convergence, the result
corresponding to equation (22.3) is therefore

dW (1)
t dW (2)

t = 0 (23.17)

(ii) Consider a function f (x (1)
t , x (2)

t , t) which is a function of two independent Brownian motions
and may be written as (

dx (1)
t

dx (2)
t

)
=
(

a(1)
t

a(2)
t

)
dt +

(
b(1)

t c(1)
t

b(2)
t c(2)

t

)(
dW (1)

t

dW (2)
t

)
(23.18)

The Taylor expansion considered is now

d f
(
x (1)

t , x (2)
t , t

) = ∂ ft

∂t
dt + ∂ ft

∂x (1)
t

dx (1)
t + ∂ ft

∂x (2)
t

dx (2)
t

+1

2




∂2 ft

∂
(

x (1)
t

)2

(
dx (1)

t

)2
+ 2

∂2 ft

∂x (1)
t ∂x (2)

t

(
dx (1)

t dx (2)
t

)
+ ∂2 ft

∂
(

x (2)
t

)2

(
dx (2)

t

)2


+ · · ·

Substitute for dx (1)
t and dx (2)

t from the first set of equations; to 0[δt], (dx (1)
t )2 = (dx (2)

t )2 = dt
and dx (1)

t dx (2)
t = 0, giving a lengthy mess of an equation which is most neatly written in matrix

notation:

d ft = ∂ ft

∂t
dt +

(
∂ ft

∂x (1)
t

∂ ft

∂x (2)
t

) (
a(1)

t

a(2)
t

)
dt

+ 1

2

(
∂2 ft

∂(x (1)
t )2

∂2 ft

∂x (1)
t ∂x (2)

t

∂2 ft

∂(x (2)
t )2

)  b(1)
t c(1)

t 0 0
b(2)

t c(2)
t b(1)

t c1t

0 0 b(2)
t c(1)

t






b(1)
t

c(1)
t

b(2)
t

c(2)
t


 dt

(
∂ ft

∂x (1)
t

∂ ft

∂x (2)
t

) (
b(1)

t c1t

b(2)
t c(1)

t

) (
dW (1)

t

dW (2)
t

)
(23.19)

(iii) The Feynman–Kac analysis of Section 23.5 can be readily extended to two-dimensional Brown-
ian motion. Using precisely the same reasoning as in the one-dimensional case, the right-hand
side of equation (23.19) will only be a martingale if the drift term equals zero. Setting the
coefficient of dt equal to zero gives the following PDE:

0 = ∂ ft

∂t
+
(

∂ ft

∂x (1)
t

∂ ft

∂x (2)
t

)(
a1t

a2t

)

+1

2

(
∂2 ft(
∂x (1)

t

)2 ∂2 ft

∂x (1)
t ∂x (2)

t

∂2 ft

∂
(
∂x (2)

t

)2
)  b1t c1t 0 0

b2t c2t b1t c1t

0 0 b2t c2t






b1t

c1t

b2t

c2t


 (23.20)
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(iii) Correlated Brownian Motions: When applying the above theory to an option dependent on
two Brownian motions, the framework is usually set up in a slightly different, but equivalent,
way: take two stochastic processes

dx (1)
t = a(1)

t dt + b(1)
t dW (1)

t

dx (2)
t = a(2)

t dt + b(2)
t dW (2)

t

where W (1)
t and W (2)

t are not independent but related through a correlation coefficient ρ. In
Appendix A.1(vi) it is shown that W (1)

t may be written as

W (2)
t = ρW (1)

t +
√

1 − ρ2W (3)
t

where W (1)
t and W (3)

t are independent Brownian motions. With these substitutions, equa-
tion (23.17) becomes

dW (1)
t dW (2)

t = ρ dt (23.21)

and Ito’s lemma becomes

d ft =
{

∂ ft

∂t
+ a(1)

t
∂ ft

∂x (1)
t

+ a(2)
t

∂ ft

∂x (2)
t

}
dt

+ 1

2

{(
b(1)

t

)2 ∂2 ft

∂
(
x (1)

t

)2 + 2ρb(1)
t b(2)

t
∂2 ft

∂x (1)
t ∂x (2)

t

+ (b(2)
t

)2 ∂2 ft

∂
(
x (2)

t

)2
}

dt

+ b(1)
t

∂ ft

∂x (1)
t

dW (1)
t + b(2)

t
∂ ft

∂x (2)
t

dW (2)
t (23.22)

The two-dimensional PDE corresponding to equation (23.20) becomes

0 = ∂ ft

∂t
+ a(1)

t
∂ ft

∂x (1)
t

+ a(2)
t

∂ ft

∂x (2)
t

+1

2

(
b(1)

t

)2 ∂2 ft

∂
(
x (1)

t

)2 + ρb(1)
t b(2)

t
∂2 ft

∂x (1)
t ∂x (2)

t

+ 1

2

(
b(2)

t

)2 ∂2 ft

∂
(
x (2)

t

)2 (23.23)

23.8 STOCHASTIC CONTROL

The material in this section is used in the analysis of passport options in Section 26.6. The
reader can safely omit the section until he is ready.

(i) Generator of a Diffusion: Consider a function ft of an underlying stochastic process
dxt = at dt + bt dWt . It was explained in Section 23.1 that no meaning can be attached to
the expression

d ft

dt
= lim

δt→0

ft+δt − ft

δt

although the expression

∂ ft

∂t
= lim

δt→0

ft+δt − ft

δt

]
xt held constant
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is perfectly respectable. We now look at a related expression

A ft = lim
δt→0

E[ ft+δt | Ft ] − ft

δt

The term E[ ft+δt |Ft ] is not stochastic so there is no reason why this should not follow the
behavior of any other analytical function. “A” is known as the generator of the process xt .

(ii) Ito’s lemma can be written

d ft =
{

∂ ft

∂t
+ at

∂ ft

∂xt
+ 1

2
b2

t

∂2 ft

∂x2
t

}
dt + bt

∂ ft

∂xt
dWt

Taking expectations at time t, the last term is a martingale and drops out, so we have

lim
δt→0

E[ ft+δt − f | Ft ]

δt
= A ft = ∂ ft

∂t
+ at

∂ ft

∂xt
+ 1

2
b2

t

∂2 ft

∂x2
t

(23.24)

From this last result and Ito’s lemma in integral form equation (23.2) we have Dynkin’s formula:

E[ ft | F0] = f0 + E

[∫ t

0
A fs ds

∣∣∣∣ F0

]
(23.25)

(iii) Suppose a stochastic function is defined by ft = E[
∫ T

t gs ds |Ft ]. Then

A ft = lim
δt→0

E[ ft+δt | Ft ] − ft

δt

= lim
δt→0

1

δt

{
E

[
E

[∫ T

t+δt
gs ds

∣∣∣∣Ft+δt

] ∣∣∣∣Ft

]
− E

[∫ T

t
gs ds

∣∣∣∣Ft

]}

= lim
δt→0

1

δt
E

[∫ T

t+δt
gs ds −

∫ T

t
gs ds

∣∣∣∣ Ft

]
(tower property)

= −gt (23.26)

Alternatively, if ft = E[h(T, xT , t, xt ) | Ft ] we can use the same procedure to write

A ft = ∂h(T, xT , t, xt )

∂t
(23.27)

(iv) Definition of the Stochastic Control Problem: Consider a function G(ut , xt , t), where dxt =
at dt + bt dWt . Suppose G(ut , xt , t) depends on a parameter u(xt ) which we are free to change
in order to change or control the value of Gt . We assume that ut is also a stochastic variable
dependent on xt .

The objective of this section is to discover the form of Ut , which is the value of ut which
maximizes the value of the expectation J0 = E[gt (ut ) | F0]. We need to be quite clear about the
nature of ut : we have discretion to vary this as we wish, although this is likely to be in response
to changes in the value of xt ; so the expectation J0 depends on whatever we decide the function
us shall be between times 0 and t. On the other hand, Ut depends only on the form of Gt and xt ,
and can be objectively determined, i.e. we no longer have any discretion to alter parameters. We
define the maximum value of J0 as J max

0 , i.e. J0(Us) = J max
0 . ut is called the control variable

and Ut is the optimal control; J0(us) is the cost function or performance criterion.
A favorite example makes this more concrete: xt is a stock price and Gt is the value of a

portfolio consisting of just a variable amount of a stock and of a bond. ut is the ratio of the
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23.8 STOCHASTIC CONTROL

amount of stock and bond in the portfolio. We can change this at will, but our choice is likely to
depend on the prevailing stock price. What is the formula for deciding the stock/bond ratio at
any given time, which will maximize the expected portfolio value; and what is that maximum
expected value?

(v) We assume that Jt has the general form

Jt = E

[∫ T

t
fs(us, xs, s) ds

∣∣∣∣ Ft

]
(23.28)

The integral term will be affected by the controls (i.e. values of us) we impose between time t
and T. Take the time 0 expectation of this last equation and use the tower property to give

E〈Jt | F0〉 = E

[
E

[∫ T

t
fs ds

∣∣∣∣ Ft

] ∣∣∣∣ F0

]

= E

[∫ T

t
fs ds

∣∣∣∣ F0

]
= E

[∫ T

0
fs ds−

∫ t

0
fs ds

∣∣∣∣ F0

]

= J0 − E

[∫ t

0
fs ds

∣∣∣∣ F0

]
or

J0 = E
[
Jt | F0

]+ E

[∫ t

0
fs ds

∣∣∣∣F0

]
(23.29)

Note the general form of this last equation. Section 23.5(iii) indicates that a term like Jt , which
is defined as a conditional expectation, should be a martingale. This would indeed be the case
if we had Fs = 0 in the last equation, i.e. if there were no control variable; but in the situation
being considered, we have the ability to intervene by manipulating the control variable, and
therefore destroy the natural martingale property of Jt .

(vi) J max
t is the value of Jt if ut = Ut , i.e. if we vary the parameter ut in such a way that Jt is

maximized. If we apply the strategy Ut we are no longer imposing arbitrary values of ut .
Equation (23.27) may now be written

J max
t = E

[∫ T

t
Fs(us, xs, s) ds

∣∣∣∣Ft

]
(23.30)

The difference between this and equation (23.29) is not trivial as might at first appear.
Fs(us, xs, s) is now a well-behaved (albeit stochastic) function, whereas fs(us, xs, s) was
impossible to handle as it could be changed arbitrarily by playing with ut . In other words, all
the rules of stochastic calculus can be applied to the functions J max

t and Fs(us, xs, s) but not to
Jt and fs(us, xs, s); most immediately, we can now use the results of subparagraphs (ii) and
(iii) of this section. Equations (23.26) and (23.30) taken together allow us to write

Ft (Ut , xt , t) + ∂ J max
t

∂t
+ at

∂ J max
t

∂xt
+ 1

2
b2

t

∂2 J max
t

∂x2
t

= 0 (23.31)

(vii) The hypothesis that an optimal control exists is equivalent to the condition J max
0 ≥ J0. From

equation (23.29), this may be written

J max
0 ≥ E[Jt | F0] + E

[∫ t

0
fs ds

∣∣∣∣Ft

]
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By definition, this must always be true, even if we replace Jt with J max
t on the right-hand side:

J max
0 ≥ E

[
J max

t

∣∣F0
]+ E

[∫ t

0
fs ds

∣∣∣∣ F0

]

≥ J max
0 + E

[∫ t

0
AJ max

s ds

∣∣∣∣ F0

]
+ E

[∫ t

0
fs ds

∣∣∣∣ F0

]
where Dynkin’s formula [equation (23.25)] was used. The last result may be written

E

[∫ t

0

(
fs + AJ max

s

)
ds

∣∣∣∣F0

]
≤ 0

This holds for all values of t from 0 to t so we conclude that fs + AJ max
s ≤ 0.

(viii) Hamilton–Jacobi–Bellman Equation: The results of the last two subsections can be sum-
marized as follows. Suppose there exists an optimal control ut = Ut which maximizes the
cost function J0 = E[

∫ T
0 f(us ,xs ,s) ds |F0]; writing J max

0 = E[
∫ T

0 F(Us ,xs ,s) ds | F0], the follow-
ing two conditions then hold:

1. F(Ut ,xt ,t) + AJ max
t = 0.

2. The solution given by (1) above corresponds to the maximum of the function f (ut , xt , t) +
AJ max

t .
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24

Equivalent Measures

24.1 CHANGE OF MEASURE IN DISCRETE TIME

(i) In Section 19.2 the arbitrage theorem was applied to a simple portfolio over a single time
step. The analysis led to the concept of pseudo-probabilities, which could be calculated from
the starting value of the stock and a knowledge of the two possible values after a single time
step. It was emphasized that these pseudo-probabilities are not to be confused with actual
probabilities; they are merely computational devices, despite the fact that they display all the
mathematical properties of probabilities.

If the concept is extended from a single step model to a tree, there is a pseudo-probability
assigned to each branch of the tree. In the simplest trees, there are only two pseudo-probabilities:
up and down, which are constant throughout the tree. However, we will keep the analysis more
general and consider variable branching probabilities.

N
0x

0
0x

N
1x

N
Nx

n
mx

Figure 24.1 N -Step tree (sample
space)

Consider a large binomial tree as shown in
Figure 24.1. The underlying stochastic variable xi can
take the values at the nodes of the tree which are written
xn

m (n: time steps; m: space steps from the bottom of
the tree). The entire set of values x0

0 , . . . , x N
N has pre-

viously been referred to as the sample space �, or the
architecture of the tree. The set of probabilities of up or
down jumps at each of the nodes is collectively known
as the probability measure P. From a knowledge of all
the branching probabilities (it is not assumed that they
are constant throughout the tree), we can easily calcu-
late the probabilities of achieving any particular node
in the tree; these outcome probabilities can equally be
referred to as the probability measure, since branching and outcome probabilities are mechan-
ically linked to each other. We use the notation pn

m to denote the time 0 probability under the
probability measure P of xi achieving the value xn

m at the nth time step. Clearly, we start with
p0

0 = 1.
We have already seen that in solving any option theory problem, we have discretion in

choosing sample space and probability measure. For example, the Cox–Ross–Rubinstein and
the Jarrow–Rudd sample spaces use different probability measures, but yield substantially the
same answers when used for computation (see Chapter 7). The purpose of this chapter is to
explore the effect of changing from one probability measure to another.

(ii) The Radon–Nikodym Derivative: Consider two alternative probability measures P and Q, i.e
two sets of outcome probabilities p0

0, . . . , pN
N and q0

0 , . . . , q N
N . Either of these could be applied

to the tree (sample space �). Let us now define a quantity ξ n
m = qn

m/pn
m for each node of the

tree. A new N-step tree is shown in Figure 24.2, similar to that for the xn
m but with nodal values



24 Equivalent Measures

equal to the quantities ξ n
m . This tree (�), together with a probability measure, defines a new

stochastic process ξi .
From these simple definitions, we may write

EQ[xN | F0] =
N∑

j=0

x N
j q N

j =
N∑

j=0

x N
j ξ N

j pN
j

= EP [xN ξN | F0] (24.1)

And similarly for any function of xN :

EQ[ f (xN ) | F0] = EP [ f (xN )ξN | F0] (24.2)

Simply by putting f (xN ) = 1 in this last equation gives

EP [ξN | F0] = 1 (24.3)

ξi is a process known as the Radon–Nikodym–derivative of the measure Q with respect to
the measure P. The somewhat misleading notation dQ/dP is normally used, but the word
derivative (reinforced by the differential notation) must not be taken to denote a derivative as
in analytical differential calculus; ξi is a stochastic process.

N
0x

0
0x

N
1x

N
Nx

n
mx

N
0

N
N

Figure 24.2 Sample space or Radon–Nikodym derivative

Care needs to be taken with one point: each of the ξ n
m is the quotient of two probabilities

and if the denominator is zero at any node, then the calculations blow up. We must have either
pn

m and qn
m both non-zero or both zero for each possible outcome. If the measures fulfill this

condition, we say that P and Q are equivalent probability measures.

(iii) The Radon–Nikodym process has an additional interesting property which follows from
equation (24.3). This equation holds true whatever the value of N, and since by definition
ξ0 = ξ 0

0 = 1, the process ξi must be a martingale.

(iv) It is a trivial generalization to extend equation (24.1) to the following which applies at step n:

EQ[xN | F0] = EP [xN ξN | F0]

If we wish to express the expectation of xN at F0, subject to the condition that the process xi

has previously hit a node with value xn
m (or equivalently that ξi has previously achieved ξ n

m),
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then we must introduce the probability of achieving xn
m on each side of the last equation; but

the probabilities must be expressed in the appropriate measure:

qn
mEQ

[
xN ; condition: xn = xn

m

∣∣F0
] = pn

m EP
[
xN ξ N

N ; condition: xn = xn
m

∣∣F0
]

EQ
[
xN ; condition: xn = xn

m

∣∣F0
] = 1

ξ n
m

EP
[
xN ξ N

N ; condition: xn = xn
m

∣∣F0
] (24.4)

(v) From the foregoing paragraphs, we can distil the following general properties for a Radon–
Nikodym derivative:

� EQ[ f (xN ) | F0] = EP [ξN f (xN ) | F0]
� EP [ξ j | Fi ] = ξi i < j (martingale)
� ξ0 = 1; ξi > 0
� ξi EQ[ f (xN ) | Fi ] = EP [ξN f (xN ) | Fi ]

24.2 CHANGE OF MEASURE IN CONTINUOUS TIME:
GIRSANOV’S THEOREM

(i) The probability measure in the tree of the last section was defined as the set of probabilities
throughout the tree. In continuous time, the probability measure is the time-dependent fre-
quency distribution for the process. For example, if Wt is a standard Brownian motion, its
frequency distribution is a normal distribution with mean 0 and variance t. The probability of
its value lying in the interval Wt to Wt + dWt is

dPt = 1√
2π t

exp

(
− 1

2t
W 2

t

)
dWt

A change of probability measure which is analogous to changing the set of probabilities in
discrete time simply means a change in the frequency distribution in continuous time. A
Radon–Nikodym derivative can be defined which achieves this change in probability measure:

ξ (xt ) = dQt

dPt
= F Q(xt ) dx Q

t

F P (xt ) dx P
t

(24.5)

where F P (xt ) and F Q(xt ) are the frequency distributions corresponding to the probability
measures P and Q.

As in the case of discrete distribution, the analysis breaks down if at any point we allow
dQt to remain finite while dPt is zero. Therefore only equivalent probability measures are
considered, which ascribe zero probability to the same range of values of the variable xt . This
is illustrated in Figure 24.3.

Figure 24.3 Probability measures
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The first frequency distribution is normal. The middle distribution is a little unusual, but is
“equivalent” to the normal distribution. The third distribution is a very common one, but is not
equivalent to the first, since it ascribes a value 0 outside the square range.

(ii) We now investigate the process ξT which is defined by

ξT = eyT ; dyt = − 1
2φ2

t dt − φt dWt

It is shown in Section 23.4(iv) that ξT is a martingale and that ξ0 = 1 and ξt > 0. There-
fore ξT displays the basic properties of a Radon–Nikodym derivative which are set out in
Section 25.1(v).

The function ξT will be applied as the Radon–Nikodym derivative in transforming a drifted
Brownian motion dx P

t = µt dt + σt dW P
t (defined as having probability measure P) to some

other stochastic process (defined as having probability measure Q). We are interested in dis-
covering what that other stochastic process looks like, for the specific form of ξT defined
above.

(iii) Before proceeding with the analysis, we recall a result described in Appendix A.2(ii). A normal
distribution N (µT, σ 2T ) has a moment generating function given by

MP (�) = EP
[
e�x P

T
∣∣F0

] = eµT �+ 1
2 σ 2T �2

Furthermore, the moment generating function for the random variable x P
T is unique, i.e. if x P

T
has the above moment generating function, then x P

T must have the distribution N (µT, σ 2T ).
The analogous results for a process x P

t with variable µt and σt are obtained from the
following modifications:

µT = EP [xT | F0] =
∫ T

0
µt dt

σ 2T = var[xT ] = EQ

[{∫ T

0
σ 2

t dWt

}2 ∣∣∣∣F0

]
=
∫ T

0
σ 2

t dt

The moment generating function result above can now be written more generally as

MP (�) = EP
[
e�x P

T
∣∣F0

] = EP

[
exp

[
�

{
x0 +

∫ T

0
µt dt +

∫ T

0
σt dWt

}] ∣∣∣∣F0

]

= exp

[
�

{
x0 +

∫ T

0
µt dt

}
+ 1

2
�2
∫ T

0
σ 2

t dt

]
(24.6)

We will also use the following standard integral result which is a special case of the last equation
with � = 1:

EP

[
exp

[
x0 +

∫ T

0
µt dt +

∫ T

0
σt dWt

] ∣∣∣∣F0

]
= exp

[
x0 +

∫ T

0
µt dt + 1

2

∫ T

0
σ 2

t dt

]
(24.7)
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(iv) The effect of changing to probability measure Q by using ξT as the Radon–Nikodym derivative
is as follows:

MQ[�] = EQ
[
e�x Q

T
∣∣F0

] = EP
[
ξT e�x P

T
∣∣F0

]
= EP

[
exp

[
−1

2

∫ T

0
φ2

t dt −
∫ T

0
φt dWt

]
exp

[
�

{
x0 +

∫ T

0
µt dt +

∫ T

0
σt dWt

}] ∣∣∣∣F0

]

= EP

[
exp

[
�x0 +

∫ T

0

(
�µt − 1

2φ2
t

)
dt +

∫ T

0
(�σt − φt ) dWt

] ∣∣∣∣F0

]

where we have used y0 = 0 (since ξ0 = 1). Use of equation (24.7) shows that the last equation
may be written

MQ(�) = exp

[
�x0 +

∫ T

0

(
�µt − 1

2φ2
t + 1

2�2σ 2
t − �σtφt + 1

2φ2
t

)
dt

]

= exp

[
�

{
x0 +

∫ T

0
(µt − λt ) dt

}
+ 1

2
�2
∫ T

0
σ 2

t dt

]
(24.8)

where we have arbitrarily defined λt = σtφt .
Comparing equations (24.6) and (24.8) leads us to the following conclusions which constitute

Girsanov’s theorem.
The effect on a drifted Brownian motion of changing probability measure by using the

Radon–Nikodym derivative ξt as defined above is as follows:

� The measure P drifted Brownian motion is transformed into another drifted Brownian motion
(with probability measure Q).

� The variances of the two Brownian motions are the same.
� The only effect of the change in measure is to change the drift by an instantaneous rate λt

which is defined above.

Formally this may be written

W Q
T = W P

T −
∫ T

0
λt dt or in shorthand dW Q

T = dW P
T − λt dt

The result is subject to the usual type of technical condition (the Novikov condition):

E

[
exp

(
1

2

∫ T

0
λ2

t dt

)]
< ∞

Girsanov’s theorem basically gives a prescription for changing the measure of a Brownian
motion in such a way that it remains unchanged except for the addition of a drift. So what,
you might ask? You can achieve the same effect by just adding a time-dependent term to the
underlying variable Wt ; what’s the big deal? We know already that the value of an option is the
expected value of its payoff under some pseudo-probability measure. The value of the theorem
is that it provides a recipe for applying this particular measure simply by adding a convenient
drift term in the SDE governing the process in question. This procedure is explicitly laid out
in the next section.
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(v) Girsanov’s Theorem without Stochastic Calculus: This is a theorem of great power and
usefulness in option theory, but it is worth a re-examination from the point of view of someone
without a knowledge of stochastic calculus; it leads to an intuitive understanding which does
much to demystify the theorem.

Consider a stochastic variable xt (x0 = 0) distributed as N (µt, σ 2t). The probability distri-
bution function of xt is

n(xt ; µ, σ ) = 1√
2πσ 2t

exp

[
−1

2

(
xt − µt

σ
√

t

)2
]

and the moment generating function has been shown to be

M(�) =
∫ +∞

−∞
e�xt n(xt ; µ, σ ) dxt = eµt �+ 1

2 σ 2t �2

Remember that M(�) uniquely defines a distribution and all its moments can be derived from
it. But by pure algebraic manipulation, the last equation could be written

M(�) =
∫ +∞

−∞
e�xt n(xt ; µ, σ ) dxt ≡

∫ +∞

−∞
e�xt

{
n(xt ; µ, σ )

n(xt ; µ′, σ )

}
n(xt ; µ

′, σ ) dxt

=
∫ +∞

−∞
e�xt

{
exp

−1

2σ 2t
((xt − µt)2 − (xt − µ′ t)2)

}
n(xt ; µ′, σ ) dxt

=
∫ +∞

−∞
e�xt exp

[
− 1

2φ2t − φ
√

t

(
xt − µ′t

σ
√

t

)]
n(xt ; µ

′, σ ) dxt where φ = µ′ − µ

σ

= e(µ′−φσ )t�+ 1
2 σ 2t�2

The conclusion to be drawn from this result is that any normal distribution, but always with the
same variance σ 2t , can be used to take the expectation of a function, but the function must be
modified by multiplication by the factor exp[− 1

2φ2t − φ
√

t( xt −µ′t
σ
√

t
)]. Alternatively expressed,

an arbitrary choice of normal distribution (but always with the same variance) really only
affects the drift term. This may be self-evident, if we remember that a normal distribution is
entirely defined by the drift and variance, and it certainly takes some of the mystery out of
Girsanov’s theorem.

24.3 BLACK SCHOLES ANALYSIS

(i) The stochastic differential equation governing a stock price movement is assumed to be

dSt = µt St dt + σt St dW RW
t (24.9)

where µt is the drift observed in the real world and the superscript RW indicates that the
Brownian motion is observed in the same real world.

Our objective now is to find the measure under which the discounted stock price S∗
t is a

martingale; S∗
t = St B−1

t where Bt is the zero coupon bond price. The reason we want to find
the measure is that the value of an option can be found by taking the expectation of its payoff
under this measure.

With variable (but non-stochastic) interest rates, we can define the value of the zero coupon
bond in terms of continuous, time-dependent interest rates rt as B−1

t = exp(− ∫ 1
0 rτ dτ ), so
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that d(B−1
t ) = −B−1

t rt dt . The process for S∗
t can then be written

dS∗
t = d

(
St B−1

t

) = B−1
t dSt + St d

(
B−1

t

)
= St B−1

t

{
(µt − rt ) dt + σt dW RW

t

}
(ii) Girsanov’s theorem tells us that we can change the probability measure by changing the drift

of the Brownian motion. Writing dW RW
t = dW Q

t − λt dt , the last equation becomes

dS∗
t = St B−1

t

{
(µt − rt − λtσt ) dt + σt dW Q

t

}
where Q is a new measure. This is a Q-martingale if the coefficient of dt is zero, i.e. if

λt = µt − rt

σt
(24.10)

The term on the right-hand side of this last equation will be familiar to students of finance
theory as the Sharpe ratio. It is normally referred to in option theory as the market price of
risk.

An important and much used property of λt is that it is the same for all derivatives of the
same underlying stock. Consider a stock whose process is given by dSt = µt dt + σt dW RW

t
where µ and σ are functions of St . Now consider two derivatives; Ito’s Lemma means that we
can write the processes for these as

f (1)
t = µ

(1)
t dt + σ

(1)
t dW RW

t ; f (2)
t = µ

(2)
t dt + σ

(2)
t dW RW

t

Let us construct a portfolio consisting of f (2)
t σ

(2)
t units of the derivative f (1), and − f (1)

t σ
(1)
t

units of f (2). The portfolio value is

πt = f (1)
t f (2)

t σ
(2)
t − f (1)

t f (2)
t σ

(1)
t = f (1)

t f (2)
t

(
σ

(2)
t − σ

(1)
t

)
A change in the value of this portfolio over an infinitesimal time step dt is

dπt = f (2)
t σ

(2)
t d f (1)

t − f (1)
t σ

(1)
t d f (2)

t = f (1)
t f (2)

t

(
σ

(2)
t µ

(1)
t − σ

(1)
t µ

(2)
t

)
dt

since the dW RW
t terms cancel. But if the return is not stochastic (i.e. is risk-free), then the return

must equal the interest rate:

σ
(2)
t µ

(1)
t − σ

(1)
t µ

(2)
t

σ
(2)
t σ

(1)
t

= rt or
µ

(1)
t − rt

σ
(1)
t

= µ
(2)
t − rt

σ
(2)
t

(= λt )

(iii) Let us now return to equation (24.9) and rewrite this in terms of the measure Q, using the above
value for λt . Simple substitution gives us

dSt = rt St dt + σt St dW Q
t (24.11)

In a nutshell, we have changed the real-world SDE by changing to the alternative measure Q
which turns the discounted stock price into a martingale; the effect of this switch is merely to
replace the real-world stock drift by the risk-free interest rate. The measure is therefore usually
referred to as the risk-neutral measure. This analysis is simply a sophisticated re-statement
of the principle of risk neutrality on which we based the first three parts of this book.

(iv) Continuous Dividends: The effect of a continuous dividend rate q is easy to include in the
above framework. We use constant rates for simplicity. The effect of a dividend is that the
holder of the shares receives a cash throw-off. It was shown in Chapter 1 that this can be
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incorporated into the calculations by writing the stock price as St e+qt . The discounted share
value is therefore

S∗
t = St eqt e−r t

so that

dS∗
t = S∗

t

{
(µ − (r − q)) dt + σ dW RW

t

}
or from the previous analysis

dSt = (r − q)St dt + σ St dW Q
t (24.12)

(v) Forward Price: This can be written Ft = St e(r−q)(T −t). We saw in the last subsection that
St e−(r−q)t is a Q-martingale, i.e. dS∗

t = S∗
t σ dW Q

t . Multiply both sides by e(r−q)T to give

dFt = σ Ft dW Q
t (24.13)

Using the results of Section 23.4(iv) gives

Ft = e− 1
2 σ 2t+σ dW Q

t (24.14)
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25

Axiomatic Option Theory

25.1 CLASSICAL VS. AXIOMATIC OPTION THEORY

(i) In the first three parts of this book, option theory was developed from a very few key concepts:

(A) Perfect Hedge: An option may be perfectly hedged. Previously, it was just assumed that
this is possible, and it was shown in Section 4.4 that if such a hedge exists, then it
must be a self-financing portfolio. Now, using arbitrage arguments we have shown that
a discounted derivatives price is a martingale. It was also shown that the discounted
value of a self-financing portfolio consisting of stock plus cash is also a martingale; the
martingale representation theorem therefore proves that an option can be perfectly hedged.
The reader who has the inclination to play with these two set of arguments as explicitly
laid out in Sections 4.3 and 21.5 will quickly realize how closely the two analyses are
related. Stochastic theory has just added a lot of fancy words.

(B) Risk Neutrality: For discrete models, the derivation of risk neutrality is very closely related
in classical and axiomatic option theory. In both cases, we start by examining a single step:
in the classical case, we get the result in Section 4.1 by saying that a portfolio consisting
of an option plus a hedge must be risk-free and therefore have a return equal to the interest
rate; in the axiomatic case, we use the arbitrage theorem to prove the same result.

For continuous models, the arguments appear to diverge rather more. We inferred risk
neutrality in the classical case from the fact that the real-world drift does not appear in the
Black Scholes equation. In axiomatic theory, risk neutrality falls out of the application of
Girsanov’s theorem and a consideration of the properties of martingales.

(C) The Black Scholes Equation: This was derived in Section 4.2 by constructing a continuous
time portfolio of derivative plus hedge and requiring its rate of return to equal the interest
rate. In Section 23.5 it appears as a consequence of the fact that the discounted option
price is a P-martingale, which in turn is a consequence of the arbitrage theorem. Both
derivations are critically dependent on Ito’s lemma, which was introduced with a lot of
hand waving in Section 3.4 and which is of course a central pillar of stochastic calculus.
It is not possible to derive an options theory without some recourse to stochastic calculus,
albeit the very rough and ready description of Ito’s lemma given in Chapter 3.

(D) Risk-neutral Expectations: Use of these to price options was introduced with a minimum
of fuss (or rigor) in Section 4.1. Using the axiomatic approach, it was shown in Section
22.3(iv) to result from the fact that the discounted option price is a P-martingale (and
hence from the arbitrage theorem).

(ii) At this point the reader faces the awkward question “was it all worth it?” Despite our rather
robust approach, stochastic calculus has been seen to be a tool of great subtlety; but we don’t
seem to have any additional specific results to what we had before.

Without beating about the bush, our view is that if someone is interested in equity-type
options (including FX and commodities), he is likely to find most results he needs through the
classical statistical approach to option theory. His main problem will be reading the technical
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literature, which tends to use stochastic calculus whether or not it is needed to explain option
theory. But for anyone interested in interest rate options, a knowledge of stochastic calculus is
indispensable.

Having said this, the next two sections deal with two topics which demand fairly advanced
stochastic techniques. The first is the question of whether an American option is indeed a
hedgeable instrument, which is by no means self-evident from the last few chapters. The
second is the so-called stop–go paradox, which lies at the very heart of option theory; its
resolution is quite subtle and it puzzled theorists for some while. The remainder of the chapter
uses stochastic calculus to re-derive a number of previous results more elegantly and sometimes
more convincingly.

25.2 AMERICAN OPTIONS

The axiomatic option theory developed in this part of the book has so far only examined the
case of European options. American options are analytically more difficult to handle; but they
are also commercially more common, so we need to be sure that the mathematical rules do not
break down when the possibility of early exercise is allowed. For example, if the possibility
of early exercise were to destroy the martingale property of the discounted option price, the
option might no longer be hedgeable! This subject will need a little bit of a mathematical
detour, as we first need to introduce some new concepts.

(i) Consider an American option in a discrete time framework. fn is the no-arbitrage value of the
option at step n and Kn is the exercise value at the same point in time; f ∗

n and K ∗
n are the

discounted values B−1
n fn and B−1

n Kn . Suppose our model has N steps and the option has got
as far as step N − 1 without being exercised. There are two possibilities at this point:

� It is not worth exercising the option, in which case its value is the same as for the corre-
sponding European option:

f ∗
N−1 = EQ[ f ∗

N | FN−1]

where Q is the risk-neutral probability measure.
� It is better to exercise immediately and receive the payoff KN−1.

Taking these two possibilities together gives the price of an American option at N − 1 as

f ∗
N−1 = max[K ∗

N−1, EQ[ f ∗
N | FN−1]]

Generalizing this to any point in the process gives

f ∗
n = max

[
K ∗

n , EQ[ f ∗
n+1 | Fn]

]
(25.1)

(ii) Snell’s Envelope: This expression for f ∗
n clearly means that the nice martingale property of a

discounted option price has been destroyed; this is a little worrying, given the extent to which
the martingale property was exploited in the European case.

From its definition in equation (25.1), f ∗
n is a Q-supermartingale, i.e. f ∗

n ≥ EQ[ f ∗
n+1 | Fn].

Consider this result written in a slightly different format:

f ∗
n =

{
EQ[ f ∗

n+1 | Fn] if EQ[ f ∗
n+1 | Fn] > K ∗

n
K ∗

n if EQ[ f ∗
n+1 | Fn] < K ∗

n
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It is immediately apparent that f ∗
n is the smallest conceivable process that is both a super-

martingale and also always greater or equal to K ∗
n . f ∗

n is sometimes known as Snell’s envelope
of the process K ∗

n .

(iii) Stopping Times: We now introduce the important concept of a stopping time, also known as
a Markov time; this is the time at which some event is achieved, e.g. the American option is
exercised. The critical property of a random variable called a stopping time τ is that it is Fτ -
measurable. In non-jargon, this means that τ can only be a stopping time if you can recognize
it as such when a predefined event happens. Take a gambler at a casino: valid stopping times
for him might be (a) when his winnings are $1000, (b) when he has lost more than anyone else
in the room, (c) at 3.00 a.m.; it cannot be the game before his first loss.

The most elementary stopping time in the study of Brownian motion is the time when the
displacement from the origin first achieves a given value. In the context of American options,
it is usually the time when it first makes sense to exercise the option. For knock-out options it
is usually the time when the option is knocked out.

The most usual notation for a stopping time for a process yn is ν = min{n : yn = xn}, i.e. ν

is the earliest time when the stochastic variable yn achieves a certain predefined value xn .

0 n N

time

νν

0 n Nν

(iv) The following notation is a little tricky but needs to be
absorbed if the rest of the material is to be understood.
We are very used to representing a general term in a
process by Yn; this obviously means that the variable
can take N different time values. Suppose now that
there exists a stopping time ν, which by definition is a
random variable. The subscript n ∧ ν means that when we consider a variable Yn∧ν , we take
the value n or ν, whichever is smaller. In other words, Yn∧ν ≡ Yn up to the stopping time and
Yn∧ν ≡ Yν thereafter.

Yn∧ν can simply be written as the process Zn . It is helpful to compare these processes:

Yn : Y1, Y2, · · · , Yn, · · · , YN

Zn = Yn∧ν : Y1, Y2, · · · , Yν, Yν, · · · , Yν = Yn1[n<ν] + Yν1[n≥ν]

It follows from the definitions that Zn+1 − Zn = (Yn+1 − Yn)1[n<ν]; If Yn is a martingale, we
have

EQ [Zn+1 − Zn | F0] = 1[n<ν] EQ [Yn+1 − Yn | F0] = 0

The term 1[n<ν] is taken out of the expectation operator since by definition a stopping time ν

is Fν-measurable. This last equation leads to the following important conclusion. If Yn is a
martingale and ν is a stopping time, Yn∧ν is also a martingale; similarly, if Yn is a super-(or
sub-) martingale, Yn∧ν is also a super-(or sub-) martingale.

(v) Discounted American Option Price is a Martingale: Let us now return to our price for an
American option which was given by

f ∗
N = K ∗

N

f ∗
n = max[K ∗

n , E[ f ∗
n+1 | Fn]]

and define a new process Zn = f ∗
n∧ν where ν is the stopping time at which f ∗

n = k∗
n for the
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first time. Zn may be written explicitly as follows:

Zn =
{

E [Zn+1 | Fn] n < ν

K ∗
ν = constant n ≥ ν

By the reasoning of the last subsection, Zn is seen to be a martingale even though f ∗
n has been

shown to be a supermartingale. It is a comfort to have found a martingale again, since so much
of axiomatic option theory depends on this property.

0 Nνν ν'

(vi) Optimal Stopping: The question needs to be asked
whether an American option should be exercised as
soon as the first stopping time is reached, or should we
wait for some better stopping time in the future. There
could of course be many occasions when f ∗

n = K ∗
n and our stopping time ν is merely the

first occasion this happens. Let ν ′ be some subsequent stopping time when this condition is
fulfilled. Define Z ′

n = f ∗
n∧ν ′ . From n = 0 to n = ν ′, we have Z ′

n = f ∗
n . But f ∗

n is just Snell’s
envelope of K ∗

n , i.e. it is a supermartingale. Z ′
n is a supermartingale, rather than a martingale

which was the case for Zn where we considered only the first stopping time. Thus

E [Zn | F0] = Z0 = f ∗
0 (martingale)

E
[
Z ′

n | F0
] ≤ Z0 = f ∗

0 (supermartingale)

from which E[Z ′
n|F0] ≤ E[Zn|F0].

The first stopping time ν is called the optimal stopping time since the expected value of the
underlying process for this stopping time is at least equal to, and sometimes greater than, that
for any other stopping time.

(vii) Let us now see what all this means for American options in practical terms.

(A) f ∗
n is not a martingale but f ∗

n∧ν is. By the martingale representation theorem, the latter
may be hedged or replicated by a self-financing portfolio containing stock and bond.

(B) The arbitrage theorem implies that there exists a probability measure (set of pseudo-
probabilities) which allows us to discount back through the tree using the interest rate.
However, the possibility of early exercise means that the value at a node is either the
discounted value or the exercise value, whichever is greater. This destroys the martingale
property of the discounted option price.

(C) Up to the first stopping time when f ∗
n = K ∗

ν , we have f ∗
n∧ν = f ∗

n . From that point on, f ∗
n

starts displaying its supermartingale qualities, i.e.

E[ f ∗
n | Fν] < f ∗

ν

But if the expected future value of f ∗
n is less than f ∗

ν , any logical person would take f ∗
ν

on the day. The economically optimal course of action is for the option to be exercised at
the first stopping time.

The conclusions above could of course be recast in the language of continuous time stochastic
calculus. However, this does not seem worth doing since it leads to no new insights. It would be
great if this analysis led to the holy grail of finding a closed formula for American options, but
alas it does not. The essential message to take away from this section is that an American option
can indeed be hedged and can be priced using trees, with the proviso that the price at any node
is the maximum of the exercise price and the value calculated by rolling back through the tree.
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(viii) One topic involving continuous time analysis is of interest and is merely sketched in outline.
Recall the reasoning of Section 23.5(ii) where the Black Scholes equation was derived as a
direct consequence of the fact that the discounted derivatives price is a martingale. But for
American options, the discounted derivatives price is a supermartingale. The Black Scholes
equation should therefore be replaced by the inequality

r ft − ∂ ft

∂t
− r St

∂ ft

∂St
− 1

2
σ 2S2

t

∂2 ft

∂S2
t

≥ 0

In fact, if we take this last inequality together with

ft ≥ Payoff value

we can say that either the first or the second of these two relationships holds at each point in the
price evolution of an American option. If the reader reflects for a moment, he will realize that
this is a re-statement of the definition of Snell’s envelope. It is also a more formal statement
of the intuitive results given in Section 6.1.

25.3 THE STOP–GO OPTION PARADOX

(i) Consider the following strategy. Sell a call option for its fair value of $10. As a hedge, use a
stop–go strategy of borrowing money and buying 100% of the underlying stock when the stock
price St reaches the strike price X from below, and selling whenever St reaches X from above.
In an idealized Black Scholes world of no transaction costs, absolute liquidity and continuous
markets, the option is hedged for nothing leading to a $10 profit.

If you ask a crowd of students to explain this paradox, the answers are usually bunched
into two groups: there are the banal responses covering liquidity, transaction costs, inability
to hit a price exactly, etc., but these have already been covered by the assumption of a Black
Scholes world. The second group will more or less precisely point out that the hedge portfolio
is not self-financing. This is of course perfectly true but we can (hypothetically) restructure
the stop–go strategy using forward contracts. Instead of buying or selling the stock each time
its price crosses X, we take out or close a forward contract each time the forward price crosses
X. The maturity of each forward contract is the maturity date of the call option being hedged.
This time there is no carrying cost for the hedge, but we still appear to have created an arbitrage
profit (Kane and Marcus, 1988; Carr and Jarrow, 1990).

(ii) In order to resolve the paradox, we start by defining the strategy precisely. In a Black Scholes
world, the stock price is assumed to be described by the following SDE:

dSt = Stµ dt + StσdW RW
t

where µ is the return on the stock and RW indicates a real-world probability measure. A change
of measure using Girsanov’s theorem allows us to write

dS∗
t = S∗

t σ dW Q
t ; S∗

t = St B−1
t = St e−r t

where Q is the risk-neutral probability measure.
The process for the forward price is given in Section 24.13 as

dFt = Ftσ dW Q
t (25.2)

It is immediately apparent that the forward price is a Q-martingale.
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Ft

t1 T

X

t2 t3

Figure 25.1 Stop–go hedging strategy

Suppose we replicate a call option
using the following strategy: at each
point where the forward price crosses
X in the highly stylized Figure 25.1,
we buy or sell a forward contract. No
cash passes hands when the forward
contracts are bought or sold, but the
final tally at time T is as follows:

• At t1: enter forward contract to buy
stock for $X at time T . No cash
exchange.

• At t2: enter forward contract to sell
stock for $X at time T . No cash exchange.

� At t3: enter forward contract to buy stock for $X at time T . No cash exchange.
� At T : net, we own one expiring forward contract, valued at $(ST − X ).

Clearly, if there are a thousand crossings rather than the three shown in the graph, we still
come up with the same answer. The strategy does look truly self-financing and always seems
to give us a perfect hedge at the end.

(iii) A forward contract has no intrinsic value when it is first entered into at a market rate. However,
is does have a value if the market price moves away from the price specified in the contract.
Suppose we have a contract to buy one share of stock at price X in time T − t and the present
forward price is Ft . The value of this forward contract is shown by simple arbitrage arguments
in Section 1.3(v) to be given by

Value = (Ft − X ) e−r (T −t)

Our portfolio strategy is to buy or sell forward contracts at the forward price X whenever Ft

passes through X, i.e. no cash outlay is needed when the forward contracts are bought or sold.
The net number of contracts we own at any time is one or zero depending on whether Ft

is above or below X. We use the notation 1[Ft >X ] to describe this number. The value of our
portfolio at any time t may be written as

Vt = 1[Ft >X ](Ft − X ) e−r (T −t) (25.3)

This particular portfolio is self-financing, since no cash is paid or received before maturity.
Section 20.5(ii) tells us that the discounted price (V ∗

t = e−r t Vt ) of such a portfolio is a mar-
tingale; the martingale representation theorem means that it can be expressed in terms of any
other martingale – and specifically in terms of Ft :

V ∗
T = V ∗

0 +
∫ T

0
1[Ft >X ] dFt (25.4)

Substituting into this last equation from equation (25.3) gives

e−rT [FT − X ]+ = e−rT [F0 − X ]+ +
∫ T

0
1[Ft >X ] dFt (25.5)

This relationship seems intuitively reasonable but unfortunately it is the wrong answer! This
becomes immediately apparent if we take the expectation of the last equation to get the value
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of a call option. Using the fact that the expectation of the integral is zero (Ft is a Q-martingale)
and FT = ST and F0 = S0 erT gives

C0 = e−rT EQ
0 [[ST − X ]+] = [S0 − e−rT X ]+ (25.6)

This is indeed the value of a call option, but only if the volatility is zero. So in physical terms,
where is the fallacy?

Let’s re-examine the strategy, this time being precise to the point of nerdishness. In our
description we said that we buy or sell forward contracts each time Ft crosses X. Obviously
this means that at Ft > X , our last move was to buy a contract while at Ft < X , our last move
was to sell one. Consider what happens when Ft is exactly equal to X. Do we both buy and sell,
or do we do nothing? To a practical, shirt-sleeves, get-the-job-done kinda guy, this question
just looks like time wasting. But we’ll be more precise and say that as Ft moves upwards across
X we buy a forward contract at a price X + ε and as Ft moves downwards across X we sell
a forward contract at price X; we then let ε be infinitesimally small so this really makes no
difference to our strategy . . . unless . . . .

In Section 21.1(iv) we examined the infinite crossing propertyof Brownian motion. As soon
as Ft touches X, it immediately hits it again an infinite number of times. Each time we buy a
forward contract at X + ε and sell one at X we lose an infinitesimal amount ε, which would
not matter if it were not for the fact that we do it an infinite number of times. Contrary to our
first intuition, this infinite number of infinitesimal losses leads to a defined, calculable shortfall.
This cost must be taken into account in our replication.

(iv) Black Scholes Model and Local Time: In Section 23.6(vi), it was seen that the correct form
for equation (25.5) should have been

e−rT [FT − X ]+ = e−rT [F0 − X ]+ +
∫ T

0
1[Ft >X ] dFt + 1

2 e−rT �T (X )

where the last term is the local time. Having solved the option paradox, it completes the analysis
to derive the correct answer from this last, correct equation. Equation (25.6) for the call option
price should then be written as

C0 = e−rT EQ[[ST − X ]+] = [S0 − e−rT X ]+ + 1
2 e−rT EQ[�T (X )]

The last term in this equation can be evaluated using the result of equation (23.15):

EQ[�T (X )] =
∫ T

0
X2σ 2 p(X, t) dt

where p(Ft , t) is the probability density function for the forward rate.
Equation (24.14) gives an explicit formula for the forward rate which implies that (ln Ft −

ln F0 + 1
2σ 2t) ∼ N (0, σ 2t). The probability of the forward rate lying within a small interval

is therefore

dPt = 1

σ
√

2π t
exp

[
−1

2

(
ln F0 − ln Ft − 1

2σ 2t
)2

σ 2t

]
d(ln Ft )

= 1

Ftσ
√

2π t
exp

[
−1

2

(
ln F0 − ln Ft − 1

2σ 2t
)2

σ 2t

]
dFt = p(Ft , t) dF
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and the probability density function is

p(X, t) = 1

σ X
√

2π t
exp

[
−1

2

(
ln F0/X − 1

2σ 2t
)2

σ 2t

]

The value of the call option is then

C0 = [S0 − e−rT X ]+ + σ X e−rT

2

∫ T

0

1√
2π t

exp

[
−1

2

(
ln F0/X − 1

2σ 2t
)2

σ 2t

]
dt

= [S0 − e−rT X ]+ + σ X e−rT

2

∫ T

0

1√
t
n(d2) dt

where n(d2) has the standard definition used for the Black Scholes model in Chapter 5.
Although it is not immediately apparent, this result is just the Black Scholes model, writ-
ten in a rather unusual form. In order to appreciate the connection, the reader is referred back
to equation (5.4)

vega = ∂C0(σ )

∂σ
= X e−rT n(d2)

√
T

from which we can write

C0(σ ) = C0(0) + X e−rT
∫ σ

0
n(d2)

√
T ds where d2 =

(
ln F0/X − 1

2 s2T
)

s2T

Introducing a new variable t = s2T /σ 2 so that
√

T ds = (σ/2
√

t) dt , the last integral becomes

σ X e−rT

2

∫ T

0

1√
t
n(d2) dt ; d2 =

(
ln F0/X − 1

2σ 2t
)

σ 2t

which is explicitly identical to the equation derived using local time.

25.4 BARRIER OPTIONS

In Chapter 15 and Appendix A.8 we obtained pricing and hedging formulas for barrier and
lookback options using classical statistical methods: the approach was to solve the Kolmogorov
backward equation with appropriate boundary conditions, using the method of images. This
gave the appropriate distribution function to work out the risk-neutral expectations of the
payoffs. An equivalent but much cooler derivation of the same result is now given using
stochastic calculus.

(i) Reflection Principle for Standard Brownian Motion: This very slick theorem relies on the
symmetry properties of undrifted Brownian motion. In Figure 25.2, a Brownian path starts at
t = 0 and Wt = 0; after crossing a barrier at b for the first time at time τ , the motion continues
along Path A until a maturity at t = T . Consider just that part of the path after τ , i.e. Path A.
From the symmetry of undrifted Brownian motion, each of the infinity of possible Paths A has
a possible Path B which is the reflection of Paths A in the line Wt = b. The probability of any
Path A is equal to the probability of its corresponding Path B. Applying this over the totality of
all paths, we have the following two intuitive results for the relationships between conditional
probabilities:
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Figure 25.2 Reflection principle

� P[WT < b | τ < T ] = P[WT > b | τ < T ]
� P[τ < T ] = P[WT < b | τ < T ] + P[WT > b | τ < T ]

Substitute the first equation in the second to give P[τ < T ] = 2P[WT > b | τ < T ]. In simple
layman’s terms, if a Brownian particle is at position Wt = b, the probability of its being above
or below b at some future date is 50/50. The conditional probability term on the right of this
last relationship contains a redundancy, since if WT > b then it must be true that τ < T , i.e.
this term can be written as an unconditional probability:

P[τ < T ] = 2P[WT > b] (25.7)

(ii) Distribution of First Passage Time for Standard Brownian Motion: The variable WT is
normally distributed with mean 0 and variance 1, so using the standard integral result given in
equation [A1.3] gives

P〈τ < T 〉 = 2√
2πT

∫ ∞

b
exp

(
−W 2

T

2T

)
dWT = 2√

2π

∫ ∞

b/
√

T
exp

(
− x

2

)
dx = 2N

[
− b√

T

]
(25.8)

We can obtain an expression for the probability distribution function of the first passage time
(the stopping time τ ) by differentiating this last equation with respect to T and using the
relationship

g(τ ) = ∂ P〈τ < T 〉
∂T

]
T =τ

A little algebra gives

g(τ ) = |b|√
2πT 3

exp

(
− b2

2T

)
(25.9)

(iii) Distribution of a Maximum for Standard Brownian Motion: The condition τ < T which
was used in the probabilities in subsection (i) above could alternatively be expressed as the
condition Wmax > b where Wmax is the maximum value achieved by Wt between t = 0 and
t = T ; viewing the condition in this light leads to some further insights. Referring again to
Figure 25.2, the symmetry of Paths A and B means that if WT = a for Path A then WT = 2b − a
for Path B.
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Two further reflection relationships can be written as

� P[WT < a | Wmax > b] = P[WT > 2b − a | Wmax < b] for a < b
� P[WT < a] = P[WT < a | Wmax > b] + P[WT < a | Wmax < b]

where the second of these two relationships is really the same as before. Substituting from the
first into the second and rearranging gives

P[WT < a | Wmax < b] = P[WT < a] − P[WT > 2b − a | Wmax > b] for a < b

The second probability on the right-hand side can be written as the unconditional prob-
ability P[WT > 2b − a] since the condition Wmax > b is automatically fulfilled if a < b
and WT > 2b − a. The left-hand probability is just a joint probability and may be written
P[WT < a; Wmax < b]. The last equation may be written

P[WT < a; Wmax < b] = P[WT < a] − P[WT > 2b − a]

= N

[
a√
T

]
− N

[
−2b − a√

T

]
(25.10)

where we have used the same method in evaluating the probabilities as was used in deriving
equation (25.8).

(iv) Using the methods of Appendix A.1(i), we differentiate equation (25.10) to give the following
important results.
Distribution of WT below a barrier at b:

F[WT | Wmax < b] = ∂P[WT < a; Wmax < b]

∂a

]
a→WT

= 1√
2πT

{
exp

(
−W 2

T

2T

)
− exp

[
− (2b − Wt )2

2T

]}
(25.11)

Joint distribution of Wmax and WT:

F[WT ; Wmax] = ∂2P[WT < a; Wmax < b]

∂a∂b

]
a → WT

b → Wmax

= 2(2Wmax − WT )√
2πT 3

exp

[
− (2Wmax − Wt )2

2T

]
(25.12)

(v) Drifted Brownian Motion: The results of this section so far might be interesting, but apply
only to standard Brownian motion without drift. How can we adapt the results to introduce a
drift, which is needed to solve real options problems? This is where Girsanov’s theorem comes
into its own.

We start by looking at the effect of adding a drift term. From Section 24.2 we know that if
we change probability measure from P to Pµ by using a Radon–Nikodym derivative

ξT = e+µWT − 1
2 µ2T

then the effect is to give the standard Brownian motion a positive drift µT . But this is just what
we are looking for. Using equation (25.4) we can write

F Pµ dW µ

T = ξT F P dWT
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or using the probability density function of equation (25.11)

P
[
W µ

T < a; W µ
max < b

] =
∫ a

−∞
F Pµ[

W µ

T

∣∣W µ
max < b

]
dW µ

T

=
∫ a

−∞
ξT F P [WT | Wmax < b] dWT

(25.13)∫ a
−∞ e

+µWT −
1

2
µ2T

1√
2πT

{
exp

(
−W 2

T

2T

)
− exp

[
− (2b − Wt )2

2T

]}
dW

= N

[
a − µT√

T

]
− e2µb N

[
−2b − a + µT√

T

]

The standard results of Appendix A.1(v) have been used to evaluate the integrals.

(vi) The stochastic process underlying the last equation is a shifted Brownian motion which can
be written W µ

T = µT + WT ; but we are really interested in a more general process xT =
µT + σ WT . The transformation from one to the other uses the self-evident fact that

P[xT < a; xmax < b] = P

[
xT

σ
<

a

σ
;

xmax

σ
<

b

σ

]

Clearly, the general result for the stochastic process of interest is therefore obtained by making
the substitutions a → a/b, b → b/σ , and µ → µ/σ in equation (25.12):

P[xT < a; xmax < b] = N

[
a − µT

σ
√

T

]
− e

2µb
σ2 N

[
−2b − a + µT

σ
√

T

]
(25.14)

This is a slightly more general form of equation (A8.5), and it reduces to the latter equation in
the special case where a = b. It lies at the center of barrier and lookback option pricing. It is
worth noting that the following distributions can be obtained from it:

� Distribution of xT in the presence of a barrier: differentiate with respect to a.
� Distribution of τ , the first crossing time for the barrier: differentiate with respect to T.
� Distribution of xmax, the maximum achieved by xT before T: set a = b and differentiate with

respect to b.

(vii) The reader may be interested in flicking through Appendix A.7 and comparing that material with
what has been presented in this section. Although the branch of mathematics used previously
(PDEs solved using Green’s functions) seems unrelated to the stochastic calculus of this
chapter, the formulas that emerge are very similar; note for example the similarity between the
exponential term in front of equation (A8.1) and the Radon–Nikodym derivative used in this
section. As we have seen frequently in the book, when there are alternative approaches to a
problem, the formulas are the same whichever route we take; just the mathematical dialect is
different.

25.5 FOREIGN CURRENCIES

In this section we will use stochastic calculus to produce some of the key results of Chapter 13
on currency translated options. In that earlier chapter we used the framework which had been
developed for options on two assets, to construct the currency translated pricing models. The
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25 Axiomatic Option Theory

reader who has studied that chapter will recall that a fair amount of huffing and puffing was
involved in getting the final results. The approach which follows is altogether more graceful.

We use the same notation as previously:

“Domestic currency”: US$; “Foreign currency”:€

φt : Value of € 1 in $ (i.e. $ price of the €); $ price = φt× € price
ψt : Value of $1 in € (i.e. € price of the $); € price = ψt× $ price
ψt = φ−1

t

St : € price of a German stock; B€

t : € value of a € zero coupon bond

Pt = B€

t φt : $ value of a € zero coupon bond; Qt = Stφt : $ value of a € stock
€ X: € strike price; $ K: $ strike price

rs, r€ and q: Interest rates and dividends

It is assumed that the currency exchange rates and stock prices follow real-world (i.e. not
risk-neutral) stochastic processes which can be written

dφt = φtµφ dt + φtσφ dW φ;RW
t (25.15)

dψt = φtµψ dt + ψtσψ dW ψ ;RW
t (25.16)

dSt = StµS dt + StσS dW S;RW
t (25.17)

(i) Domestic Martingale Measure: The starting point is the Black Scholes analysis of Section
24.3 which uses Girsanov’s theorem to find out what drift (or probability measure) will ensure
that a discounted stock price is a martingale.

Imagine an American who invests in a euro-denominated zero coupon bond. The euro value
of this at time t is B€

t = er€ t and the dollar value is Pt = B€

t φt . The quantity Pt is a dollar
investment whose price is stochastic; we can therefore apply the analysis of Section 24.3.
P∗

t = Pt/B$
t = φt e(r€ −r$)t is a martingale under the risk-neutral measure which precludes

arbitrage. And we know that a change of measure can be effected by changing the drift:
dW φ;RW

t = dW φ;$
t − λφ dt .

From equation (25.15):

dP∗
t = d

(
e(r€ − r$)t

φt ) = P∗
t (r€ − r$) dt + e(r€ −r$)t dφt

= P∗
t (µφ + (r€ − r$)) dt + P∗

t σφ dW φ;RW
t

The drift term is zero under the risk-neutral measure, which is achieved if we put λφ =
[µφ + (r€ − r$)]/σφ . A short-hand description of this manipulation is to say that we allow the
coefficient of dt to → 0 as we make the substitution dW φ;RW

t → dW φ;$
t in the last equation.

Then

dP∗
t = P∗

t σφ dW φ;$
t

dφt = φt (r$ − r€) dt + φtσφ dW φ;$
t (25.18)

W φ;S
t is a Brownian motion under the risk-neutral measure; but an index $ has been added to

indicate that this is only a risk-neutral measure for a person living in a dollar world. It is often
referred to as the domestic risk neutral measure. The subtlety of this point becomes apparent
in the following subsection.
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The results have been shown for constant variance, drift and interest rate; but the analysis
can be easily generalized to take account of these parameters as functions of asset price and
time.

(ii) Foreign Martingale Measure: Consider now the “opposite” of the case just described:
a European who decides to invest in a dollar zero coupon bond. The value of this in-
vestment in euros is Rt = B$

t ψt and we look for a risk-neutral measure under which
R∗

t = Rt/B€

t = e(r$−r€ )t ψt is a martingale. As in the last subsection, we have

dR∗
t = R∗

t (r$ − r€) dt + e(r$−r€)t dψ t

but now we use the relationship ψt = φ−1
t , Ito’s lemma [equation (24.2)] and equation (25.15)

to write

dψt = φ−1
t

(−µφ + σ 2
φ

)
dt − φ−1

t σφ dW ψ ;$
t

The symmetry of Brownian motion allows us to write −W φ;RW
t → W φ;RW

t , so that

dR∗
T = R∗

t

(−µφ + σ 2
φ + (r$ − r€)

)
dt + R∗

t σφ dW φ;RW
t

Again, R∗
t is a martingale if the drift term is zero, or if µφ → σ 2

φ + r$ − r€ as dW φ;RW
t →

dW φ;$
t . Then

dR∗
t = R∗

t σφ dW φ;€
t

dφt = φt (r$ − r€ + σ 2
φ ) dt + φtσφ dW φ;€

t
(25.19)

Comparing equations (25.18) and (25.19), we seem to have derived two different risk-neutral
stochastic processes for the same exchange rate; this is known as Siegel’s paradox (Dumas,
et al., 1995). The reason is that the first martingale measure was defined in terms of domestic
currency (dollar), while the second was in foreign currency (euro).

(iii) The price of German stock [whose process is given by equation (25.17)], discounted by the €

interest rate, is a martingale under the foreign (€) risk measure. A change in this measure is
effected by making µS → µ€ as dW S;RW

t → dW S;€
t . This is just the risk-neutrality principle

re-stated yet again. But what would this risk-neutrality relationship look like when viewed by
an investor in a $ framework?

Before answering this question we need to solve an intermediate problem. The value of the
foreign stock in dollars is Qt = Stφt . In Chapter 13 we explain that Qt could be the price of a
traded security such as an ADR (American Depository Receipt). We look for a measure under
which Q*

t = Qt/B$
t = e−r$t Stφt is a martingale. Qt is a function of the two processes given

in equations (25.15) and (25.17). We therefore use the two-dimensional Ito’s lemma [equation
(23.22)] to give

dQt = Qt
{
(µS + µφ + ρσSσφ) dt + σS dW S;RW

t + σφ dW φ;RW
t

}
We seek the martingale measure for Q∗

t , i.e. in dQ∗
t = −Q∗

t r$ dt + er$t dQt the drift term
should be zero. The change of measure is effected by changing the drifts of the two Brownian
motions:

dW φ;RW
t = dW φ;$

t − λφdt ; dW S;RW
t = dW S;$

t − λS dt
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to give

dQ∗
t = Q∗

t

{
(µS + µφ − r$ + ρSφσSσφ − σφλφ − σSλS) dt + σS dW S;$

t + σφ dW φ;$
t

}
For zero drift we have

σφλφ + σsλs = µS + µφ − r$ + ρSφσsσφ (25.20)

Substituting this in the equation for dQt gives

dQt = Qtr$ dt + Qt
(
σS dW S;$

t + σφ dW φ;$
t

)
(25.21)

(iv) We have already seen an expression for λφ in the lead up to equation (25.18). This was derived in
the context of a zero coupon bond in a foreign currency. But it was shown in Section 24.3(ii) that
the market price of risk λφ is the same for all derivatives of the exchange rate φt . Substituting
that previous formula for λφ into equation (25.20) gives

λS = µS − r€ + ρSφσSσφ

σS

Again we use the fact that the market price for risk λS is the same for all derivatives of St ,
as well as for St itself. The real-world process described by equation (25.17) can then be
expressed in a risk-neutral dollar framework as

dSt = StµS dt + StσS dW S;RW
t

= StµS dt + StσS (dW S;$
t − λS dt) (25.22)

= St (r€ − ρSφσSσφ) dt + StσS dW S;$
t

(vi) Compos: We are now in a position to work out expressions for the various types of cur-
rency translated options covered in Chapter 13. The dollar payoff of a compo call option is
$[ST φT − K ]+ where K is the strike price in dollars. More generally, any compo option has the
stock price translated at the current exchange rate, but otherwise behaves like a pure domestic
option.

The risk-neutral stochastic process for Qt = Stφt in a dollar framework is given by equation
(25.21). The drift is simply r$ and the variance is given by

var
[
σS dW S;$

t + σφ dW φ;$
t

] = (σ 2
S + σ 2

φ + 2ρσSσφ

)
dt = σ 2

Sφ dt

Therefore the dollar price of a compo on a European stock is obtained from the formula (or
procedure) for pricing a domestic option, with the substitutions

r → r$; ST → ST φT ; σ → σSφ (25.23)

(vi) Quantos: The payoff of a quanto call option is $φ̄(ST − X )+, where φ̄ is a constant. More
generally, a quanto is sometimes referred to as a “wrong currency instrument”, i.e. it is a purely
foreign instrument, except that instead of getting a payoff of a certain number of euros, you
get the same number of dollars (this corresponds to φ̄ = 1 in the call option above).

The interest rate enters into the calculation of an option price in two ways: first, as a discount
factor for present-valuing the expected payout and second, as the drift term in the risk-neutral
calculations. Schematically, this is written

Value0 = e−rdiscountT f (F0T (rdrift))
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where F0T is the stock forward price which depends on rdrift; the interest rates used in these
two roles are generally the same and we do not give the matter a second thought.

In the case of a quanto, the payoff will be in dollars so that the formula for a quanto must put
rdiscount = rS. However, the drift for a euro stock in a dollar risk-neutral framework is given by
equation (25.22). Therefore, in the formula for a quanto we must have rdrift = r€ − ρSφσSσφ .
This corresponds to the procedures given in Chapter 13 for obtaining a quanto price from a
pure foreign option formula.

25.6 PASSPORT OPTIONS

These options were analyzed in Chapter 18 and there is little to add to the explanation of
the computation methods already given. However, the methodology for devising the optimal
strategy was perhaps not of the most rigorous, although the formulas produced were correct.
These options are usually analyzed using stochastic control theory, and we explain this approach
in the following short section. The section should be read in conjunction with Chapter 18, as we
have tried to avoid duplication of material (Hyer et al., 1997; Andersen et al., 1998; Henderson
and Hobson, 2000).

(i) The Problem: The starting point for analyzing these options is the following set of equations:

dSt = St (r − q) dt + Stσ dW Q
t

d ft = ftr dt + ftϕt dW Q
t ; ft = e−r (T −t) E[w+

t | Ft ]

dwt = ut dSt = ut St (r − q) dt + ut Stσ dW Q
t

(25.24)

The first is just the risk-neutral (measure Q) stochastic process for the stock price. The second
line expresses the usual relationship for the price of a derivative, given the process for the
underlying stock expressed in the previous line. The two parts of this line are alternative
statements of the fact that f ∗

t = ft B−1
t is a Q-martingale. We do not know the form of ϕt . The

third line is a description of the change in the cumulative portfolio value when ut is the amount
of stock held. We are able to change ut at will, subject to −1 < ut < +1.

The purpose of this analysis is to find a set of rules for setting ut , which maximizes ft .

(ii Change of Variables: St and wt are not independent variables; they are driven by the same
Brownian motion W Q

t . The problem is much simplified by the following change of variables:

xt = wt

St
; vt = ft

St

Use of Ito’s lemma in two dimensions, in the form of equation (23.22) with ρ = 1 and
dW (1)

t = dW (2)
t = dW Q

t gives

dxt = (ut − xt )(r − q − σ 2) dt + (ut − xt ) σdW Q
t

dvt = vt (q + σ 2 − ϕtσ ) dt + vt (ϕt − σ ) dW Q
t (25.25)

(iii) Change of Measure: The presence of the unknown variable ϕt in the drift term is a nuisance.
We therefore make a change of measure from the risk-neutral measure Q to an alternative Q′,
defined by dW Q

t = dW Q′
t + σdt . Under this measure, the last two equations become

dxt = (ut − xt )(r − q) dt + (ut − xt ) σdW Q′
t

dvt = vt q dt + vt (ϕt − σ ) dW Q′
t (25.26)
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Let v′
t = vt e−qt . Using Ito’s lemma, we can show that v′

t is a martingale; or equivalently
expressed:

vt = e−q(T −t) E Q′
[vT | Ft ] = e−q(T −t) EQ′

[X+
T | Ft ] (25.27)

(iv) The problem can now be presented as a stochastic control problem as follows:

� If dxt = (ut − xt )(r − q)dt + (ut − xt )σ dW Q′
t ;

� Find the optimal control which maximizes the performance criterion

vt = EQ′ [
e−q(T −t)x+

T | Ft
]

We use the Hamilton–Jacobi–Bellman equations of Section 23.8(viii) with slight modification
[equation (23.27) used in place of (23.26)] to conclude that:

� The optimal control occurs when the function

∂vt

∂t
+ (ut − x)(r − q)

∂vt

∂xt
+ 1

2
(ut − x)2σ 2 ∂2vt

∂x2
t

− qvt

achieves a maximum
� This maximum occurs when

∂vt

∂t
+ (ut − x)(r − q)

∂vt

∂xt
+ 1

2
(ut − x)2σ 2 ∂2vt

∂x2
t

− qvt = 0

This corresponds to equation (18.3) which was derived using classical statistical methods.
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Mathematical Appendix

There are libraries full of textbooks on applied mathematics and there is no point trying to
replicate these here. On the other hand, it can be very frustrating for a reader to spend a lot
of time digging out the necessary mathematics when his objective is to understand options
as fast as possible. We therefore quickly skim through a few areas which are essential for
an understanding of option theory, and present the mathematical tools in a format which is
immediately applicable. Many of the mathematical problems of option theory were first solved
as physics problems, and the physics vernacular has crept into the options literature. We follow
this practice and make no attempt to present the material in a pure or abstract form; in any
case, intuitive understanding is often increased by an appreciation of the underlying physical
process.

A.1 DISTRIBUTIONS AND INTEGRALS

(i) Probability Distribution Functions: If F(x) is the probability distribution function for a ran-
dom variable x, the probability P[x < a] is given by

P〈x < a〉 =
∫ a

−∞
F(x) dx or F(x) = ∂P[x < a]

∂a

]
a→x

For two random variables, similar results hold:

P〈x < a; y < b〉 =
∫ a

−∞

∫ b

−∞
F(x, y) dx dy or F(x, y) = ∂2P [x < a; y < b]

∂a ∂b

]
a→x ; b→y

(A1.1)

(ii) Normal Distribution: The expression x ∼ N (µ, σ 2) means that x is a random variable (variate),
normally distributed with mean µ and variance σ 2. A special case of the normal distribution
is the standard normal distribution which has mean 0 and variance 1. The probability density
function for the standard normal variate z is

n(z) = 1√
2π

e− 1
2 z2

which is displayed in Figure A1.1.
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n(z)area = N[Z ]

0 Z-Z

Figure A1.1 Normal distribution function

The cumulative distribution function is the shaded area in Figure A1.1:

N[Z ] = 1√
2π

∫ Z

−∞
e− 1

2 z2
dz

There is no closed form expression for this integral, which must be solved by numerical
methods. We will not give an evaluation method for N[Z ] here, as it is included as a standard
function in spread sheets such as Excel.

The converse formula is also used in this book:

∂N[z]

∂z
= 1√

2π
e− 1

2 z2 = n(z) (A1.2)

(iii) From the symmetry of the normal distribution function about the y-axis, we can write

N[−Z ] = 1√
2π

∫ −Z

−∞
e− 1

2 z2
dz = 1√

2π

∫ +∞

Z
e− 1

2 z2
dz (A1.3)

Given that the area under the curve must be 1, symmetry also allows us to write

N[Z ] + N[−Z ] = 1 (A1.4)

(iv) Lognormal Distribution: If St is a random variable and xt = ln St is normally distributed, then
St is said to be lognormally distributed; this is assumed to be the case for most securities,
exchange and commodity prices.

The well-known normal distribution of x is symmetrical about the mean, and x can take either
positive or negative values. The position of the normal distribution function is determined by
the mean while its shape (tall and thin vs. short and fat) is determined by the variance. However,
ln S is not defined for negative S so that the lognormal distribution is taken as zero for negative
values of S. This fits rather well with securities which cannot have negative prices. The precise
shape of the lognormal distribution function depends on both its mean and variance: a sample
of normal distributions with different means (but the same variance) is shown in Figure A1.2,
together with their associated lognormal distribution functions.
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Normal Mean : negative Normal Mean : zero Normal Mean : positive

0 0 0

Figure A1.2 Normal and lognormal distributions

(v) Some Useful Integrals: A number of integrals occur repeatedly in option theory and the most
important are given in this Appendix.

(A)
I Z
−∞(a) =

∫ Z

−∞
eaz n(z) dz

= 1√
2π

∫ Z

−∞
eaz− 1

2 z2
dz

= e
1
2 a2 1√

2π

∫ Z

−∞
e− 1

2 (z−a)2
dz

= e
1
2 a2 1√

2π

∫ Z−a

−∞
e− 1

2 y2
dy = e

1
2 a2

N[Z − a] (A1.5)

(B) The same factorization of terms in the exponential is used in the following:

I +∞
Z (a) =

∫ +∞

Z
eaz n(z) dz

= e
1
2 a2
∫ +∞

Z−a
n(y) dy

= e
1
2 a2

N[a − Z ] (A1.6)

where we have also used equation (A1.1).
(C) Commonly used integrals in option theory are used to evaluate conditional expecta-

tions such as E[ST − X : X < ST ], where zT = [ln(ST /S0) − mT ]/σ
√

T and
m = r − q − 1

2σ 2. Four results are given here which come directly from (A) and (B) above
� E[K : ST < X ] = K P[ST < X ] = K P[zT < Z X ]

= K
∫ Z X

−∞
n(zT ) dzT = K N[Z X ]

where Z X = [ln(X/S0) − mT ]/σ
√

T .
� E[K : X < ST ] = K P[X < ST ] = K P[Z X < zT ]

= K
∫ +∞

Z X

n(zT ) dzT = K N[−Z X ]
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� E[ST : ST < X ] = E[ST : xT < Z X ] =
∫ Z X

−∞
S0 emT +σ

√
T zT n(zT ) dzT

= S0 emT + 1
2 σ 2

N[Z X − σ
√

T ]

� E[ST : X < ST ] = E[ST : Z X < xT ] =
∫ ∞

Z X

S0 emT +σ
√

T zT n(zT ) dzT

= S0 emT + 1
2 σ 2

N[σ
√

T − Z X ] (A1.7)

Our notation uses Z X which illustrates the origin of the term in square brackets as a
limit of integration. A more common notation in the literature uses d1 and d2 where
d1 = σ

√
T − Z X and d2 = d1 − σ

√
T (= −Z X ).

(D) Using the definition zT = (ln ST /S0 − mT )/σ
√

T (or more precisely its equivalent
ST = S0 emT eσ

√
T zT ) yields the following frequently used result:

E
〈
Sλ

T

〉 = Sλ
0 eλmT

∫ +∞

−∞
eλσ

√
T zT n(zT ) dzT = Sλ

0 eλmT I +∞
−∞ (λσ

√
T )

= Sλ
0 eλmT + 1

2 λ2σ 2T = Fλ
0T e

1
2 λ(λ−1)σ 2T (A1.8)

Where F0T is the forward price of the stock.
(E) A related, but slightly more tricky pair of integrals are used in the investigation of

lookback options; the first is

I Z
−∞(a, b) =

∫ Z

−∞
eaz N

[
φ

(z − b)

σ
√

T

]
dz

=
[

1

a
eaz N

[
φ

(z − b)

σ
√

T

]]+Z

−∞
− φ

aσ
√

2πT

∫ Z

−∞
eaz exp

[
− (z − b)2

2σ 2T

]
dz

= 1

a
eaZ N

[
φ

(Z − b)

σ
√

T

]
− φ

a
eab+ 1

2 a2σ 2T N

[
(Z − b − aσ 2T )

σ
√

T

]
(A1.9)

where we have first integrated by parts and then used equation (A1.5). The same approach
gives

I ∞
Z (a, b) =

∫ Z

−∞
eaz N

[
φ

(z − b)

σ
√

T

]
dz

=
[

1

a
eaz N

[
φ

(z − b)

σ
√

T

]]∞

Z

− φ

aσ
√

2πT

∫ ∞

Z
eaz exp

[
− (z − b)2

2σ 2T

]
dz

= −1

a
eaZ N

[
φ

(Z − b)

σ
√

T

]
− φ

a
eab+ 1

2 a2σ 2T N

[
− (Z − b − aσ 2T )

σ
√

T

]
(A1.10)

(vi) Bivariate Normal Variables: Suppose y and z are two independent, standard, normal variates.
By definition, these have the following properties:

• Standard E[y] = E[z] = 0; var[y] = var[z] = 1
• Independent cov[y, z] = E[yz] = 0
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Let us define another random variable x by the equation x = ρy +
√

1 − ρ2z, where ρ is a
constant and x has the following properties:

� In general, the sum of two normal variates is itself a normal variate. Thus x is normally
distributed.

� E[x] = 0; var[x] = ρ2var[y] + (1 − ρ2)var[z] = 1.
� Correlation [x, y] = cov[x, y]√

var[x]var[y]
= E[xy] = E[ρy2 +

√
1 − ρ2 yz] = ρ.

tW

TW

Tt

Figure A1.3 Brownian path

Thus x is a standard normal variate which
has correlation ρ with y. Alternatively ex-
pressed, any two correlated standard normal
variates x and y can be decomposed into
independent standard normal variates.

Consider the single Brownian path shown
in Figure A1.3. The distance Wτ moved be-
tween time 0 and time τ is independent of
the distance WT −τ = WT − Wτ moved be-
tween time τ and time T. On the other hand,
WT and Wτ are obviously not independent
since they overlap. From the definition of a
Brownian motion as Wt = √

t zt , where zt is a standard normal variate, we have

WT = Wτ + WT −τ√
T zT = √

τ zτ + √
T − τ zT −τ

zT =
√

τ

T
zτ +

√
1 − τ

T
zT −τ

Comparing this with the decomposition we examined immediately before shows that zT and
zτ are standard normal variates with correlation ρ = √

τ/T .

(vii) Bivariate Normal Distribution: Suppose two standard normal variates z1 and z2 have correla-
tion ρ. Their joint distribution function is written

n2(z1, z2; ρ) = 1

2π
√

1 − ρ2
exp

[
− 1

2(1 − ρ2)

{
z2

1 − 2ρz1z2 + z2
2

}]
(A1.11)

In general terms, n2(z1, z2; ρ) can be represented as a bell-shaped hill. The contour lines of
this hill are shown in Figure A1.4. If the correlation ρ is zero, this bell is perfectly symmet-
rical with a circular mouth. If, however, ρ has non-zero value, then the bell is elongated to
an ellipse, along an axis at 45◦ to z1 and z2 as shown in the second two graphs. The 45◦

axis used depends on the sign of the correlation: positive slope for positive correlation, and
negative slope for negative correlation. The flatness of the ellipse depends on the degree of
correlation.
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The volume under the bell-shaped hill is unity. The cumulative density function is the volume
under the shaded part shown in the first graph of Figure A1.5. It is defined by

N2[a, b; ρ] =
∫ a

−∞

∫ b

−∞
n2(z1, z2; ρ) dz1 dz2 (A1.12)

(viii) Symmetry Properties of N2[a, b; ρ]: The properties below follow from the symmetry of
Figure A1.4.

r = 0 r negativer positive

1z

2z 2z 2z

1z 1z

Figure A1.4 Contours of n2(z1, z2; ρ)

(A) Given the symmetry of z1 and z2 in equations (A1.11) and (A1.12), it follows that

N2[a, b; ρ] = N2[b, a; ρ] (A1.13)

(B) Referring to the second graph of Figure A1.5

N2[∞, b; ρ] =
∫ b

−∞
dz2

∫ +∞

−∞
n2(z1, z2; ρ) dz1

= 1

2π
√

1 − ρ2

∫ b

−∞

∫ ∞

−∞
exp

[
− 1

2(1 − ρ2)

{
z2

1 − 2ρz1z2 + z2
2

}]
dz1 dz2

= 1√
2π

∫ b

−∞
e− 1

2 z2
2 dz2 = N[b] (A1.14)

where we have made the change of variable z1 =
√

1 − ρ2 y + ρz2 and slogged out the
integral with respect to y, holding z2 constant (i.e. dz1 =

√
1 − ρ2 dy).

z 2

X1

N2 a, b; r
z 2

z 1

N N2 ∞, b; r = b

b b

a

z 1

X1

Figure A1.5 Cumulative bivariate normal function
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z 1z 1

-a

-a

-b

b

Rotate 1800

A

B C
B

B

A

A

C

C
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Figure A1.6 Cumulative bivariate normal identities

(C) Comparing the first and third graphs of Figure A1.6 shows that∫ ∞

−a
dz1

∫ ∞

−b
n2(z1, z2; ρ) dz2 =

∫ a

−∞
dz1

∫ b

−∞
n2(z1, z2; ρ) dz2 = N2[a, b; ρ]

(A1.15)

(D) Referring to the first graph and using the fact that the volume of the elliptical bell-shaped
“hill” is 1:

Shaded volume = 1 − volume (A + B) − volume C

N2[a, b; ρ] = 1 − (1 − N[a]) − volume C

Volume C =
∫ a

−∞

∫ ∞

b
n2(z1, z2; ρ) dz1 dz2 = N[a] − N2[a, b; ρ] (A1.16)

(E) The second graph is just the first rotated through 90◦. Given that the volume of the hill is
unity and from property (c) above, we have

Shaded volume = 1 − volume A − volume (B + C)

N2[a, b; ρ] = 1 − N2[b, −a; −ρ] − (1 − N[b])

N2[a, b; ρ] + N2[−a, b; −ρ] = N[b] (A1.17)

(F) The third graph is the first rotated through 180◦. Symmetry and previous results allow us
to write

Shaded volume = 1 − volume (A + B + C)

= 1 − {volume (A + B) + volume (B + C) − volume B}
= 1 − {N[−a] + N[−b] − N2[−a, −b; ρ]}

N2[a, b; ρ] = N[a] + N[b] − 1 + N2[−a, −b; ρ] (A1.18)

(ix) More Useful Results:

(A) ∫ ∞

Z2

∫ ∞

Z1

eaz1 n2(z1, z2; ρ) dz1 dz2

= 1

2π
√

1 − ρ2

∫ ∞

Z2

∫ ∞

Z1

exp

[
az1 − 1

2(1 − ρ2)

{
z2

1 − 2ρz1z2 + z2
2

}]
dz1 dz2
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= e
1
2 a2 1

2π
√

1 − ρ2

∫ ∞

Z2−ρa

∫ ∞

Z1−a
exp

[
− 1

2(1 − ρ2)

{
y2

1 − 2ρy1 y2 + y2
2

}]
dy1 dy2

= e
1
2 a2

N2[a − Z1, ρa − Z2; ρ] (A1.19)

where we have made the substitutions z1 = y1 + a, z2 = y2 + ρa and slogged through
the algebra in the exponential. The final result relies on equation (A1.15).

(B)

∫ +∞

Z1

∫ Z2

−∞
eaz1 n2(z1, z2; ρ) dz1 dz2

=
∫ +∞

Z1

eaz1 dz1

{∫ +∞

−∞
−
∫ +∞

Z2

}
n2(z1, z2; ρ) dz2

=
∫ +∞

Z1

eaz1 n(z1) dz1 −
∫ +∞

Z1

∫ +∞

Z2

eaz1 n2(z1, z2; ρ) dz1 dz2

= e
1
2 a2{N[a − Z1] − N2[a − Z1, ρa − Z2; ρ]} (A1.20)

where we have used equations (A1.6) and (A1.19) for the last step.
(C) In order to evaluate equation (14.1) for the value of a compound call option

(call on a call) or equation (14.5) for an extendible option, we need to evaluate
E[ST − X : S∗

τ < Sτ ; X < ST ]. As in Section A.1(v), item (C) for the univariate case,
we write m = r − q − 1

2σ 2 and switch to the more convenient standard normal variates
zT = [ln(ST /S0) − mT ]/σ

√
T and zτ = [ln(Sτ /S0) − mτ ]/σ

√
τ :

E[ST − X : S∗
τ < Sτ ; X < ST ] =

∫ ∞

Z∗

∫ ∞

Z X

(S0 emT +σ
√

T zT − X )n2(zτ , zT ; ρ) dzτ dzT

= S0 e(r−q)T N2[σ
√

τ − Z∗, σ
√

T − Z X ; ρ] − X N2[−Z∗, −Z X ; ρ] (A1.21)

where we have used the integral results of (A) above with Z X = [ln(X/S0) − mT ]/σ
√

T ,
Z∗ = [ln(S∗

τ /S0) − mτ ]/σ
√

τ and ρ = √
τ/T . More common notation uses d1 =

σ
√

T − Z X , d2 = −Z X , b1 = σ
√

τ − Z∗ and b2 = −Z∗.
(D) A general result for bivariate distributions is f (z1, z2) = f 〈z1 | z2〉 f (z2) where the three

terms are the joint, the conditional and the simple probability density functions of the
random variable z1. From equation (A1.11), we may therefore write for two standard
normal variables z1 and z2:

n〈z1 | z2〉 = n2(z1, z2; ρ)

n(z2)
= 1

2π
√

1 − ρ2
exp

[
− 1

2(1 − ρ2)
{z1 − ρz2}2

]

∼ N (ρz2, (1 − ρ2)) (A1.22)

i.e. the conditional distribution of z1 is normal with mean ρz2 and variance (1 − ρ2).

(x) Numerical Approximations for the Cumulative Bivariate Normal Function: Standard spread
sheets do not have add-in functions for calculating bivariate cumulative normal functions. A
simple algorithm follows (Drezner, 1978).
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(A) We start with some definitions: let a′ = a/
√

2(1 − ρ2), b′ = b/
√

2(1 − ρ2) and the func-
tion �(a, b; ρ) be defined in the region a, b and ρ all ≤ 0 by

�(a, b; ρ) =
√

1 − ρ2

π

5∑
i=1

Ai

5∑
j=1

A j fi, j

fi, j = exp{a′(2xi − a′) + b′(2x j − b′) + 2ρ(xi − a′)b′(x j − b′)}
where the values of Ai and xi are as follows:

i Ai xi

1 0.24840615 0.10024215
2 0.39233107 0.48281397
3 0.21141819 1.0609498
4 0.03324666 1.7797294
5 0.00082485334 2.6697604

(B) In the region a ≤ 0, b ≤ 0 and ρ ≤ 0, N2[a, b; ρ] is closely approximated by �(a, b; ρ).
If these conditions on a, b and ρ do not hold, N2[a, b; ρ] is obtained by manipulation:

� If 0 < a × b × ρ use the relationship

N2[a, b; ρ] = N2[a, 0; ρab] + N2[0, b; ρba] − δab

where

ρab = (ρa − b)sign[a]√
a2 − 2ρab − b2

; δab = 1 + sign[a]sign[b]

4

sign[a] = 1 (if 0 ≤ x)

= −1 (if x < 0)

� If a × b × ρ ≤ 0 and

� a ≤ 0, 0 ≤ b, 0 ≤ ρ use N2[a, b; ρ] = N[a] − N2[a, −b; −ρ]

� a ≤ 0, b ≤ 0, 0 ≤ ρ N2[a, b; ρ] = N[b] − N2[−a, b; −ρ]

� 0 ≤ a, 0 ≤ b, ρ ≤ 0 use N2[a, b; ρ] = N[a] + N[b] − 1 + N2[−a, −b; ρ]

� a ≤ 0, b ≤ 0, ρ ≤ 0 use N2[a, b; ρ] = �(a, b; ρ)

(xi) Product of Two Securities Prices: St is an asset price (e.g. an equity stock) which we assume
to be lognormally distributed, i.e. xt = ln St is normally distributed. It is shown in Section 3.2
that

E[ST ] = S0 e(µ−q)T = S0 emT + 1
2 σ 2T (A1.23)

where µ and q are the continuous (exponential) growth rate and dividend yield of the asset;
m = E[xT ]; σ 2 = var[xT ].
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We now examine the behavior of a quantity defined by Qt = S(1)
t S(2)

t , where S(1)
t and S(2)

t

are the prices of two lognormally distributed assets. Writing yt = ln Qt , the following general
results are evoked:

� σ 2
Q = var〈yt 〉 = var

〈
x (1)

t + x (2)
t

〉 = σ 2
1 + σ 2

2 + 2ρ12σ1σ2.

� E〈yt 〉 = E
〈
x (1)

t + x (2)
t

〉 = m1T + m2T = m Q T .
� It is a specific property of normal distributions that yt is also normally distributed.

From the first two of these relationships, an expression for E[QT ] corresponding to equa-
tion (A1.23) is now written as

E[QT ] = Q0 e(µQ−qQ )T = Q0 em Q T + 1
2 σ 2

Q T = Q0 e(m1+m2+ 1
2 σ 2

1 + 1
2 σ 2

2 +ρ12σ1σ2)T

= Q0 e(µ1−q1)T +(µ2−q2)T +ρ12σ1σ2T

which is equivalent to

E
[
S(1)

T S(2)
T

] = E
[
S(1)

T

]
E
[
S(2)

T

]
eρ12σ1σ2T (A1.24)

Alternatively, we could write µQ − qQ = (µ1 + µ2) − (q1 + q2) + ρ12σ1σ2. In the risk-neutral
environment in which most of our calculations are performed, each of the “assets” S(1)

t , S(2)
t

and Qt enjoys the risk-free return, i.e. µ1 = µ2 = µQ = r ; therefore

qQ = q1 + q2 − r − ρ12σ1σ2 (A1.25)

It follows from the above analysis that any composite price, made up of the product or quo-
tient of lognormally distributed prices, is itself lognormally distributed. The various formulas
developed for single prices are therefore easily adapted to describe the behavior of such com-
posite prices; Chapters 12 and 13 are largely based on this technique. By contrast, the sum or
difference of two lognormally distributed prices does not have a well-defined distribution and
is therefore analytically intractable.

(xii) Covariances and Correlations of Stock Prices: It is worth giving some standard definitions
and results as referred to in various chapters.

(A) If x (1)
t = ln S(1)

t , we define σ1 the volatility of S(1)
t as the square root of the variance of x (1)

t :

σ 2
1 = var

[
x (1)

t

] = E
[(

x (1)
t − x̄ (1)

)2] = E
[(

x (1)
t

)2]− (x̄ (1)
)2

; x̄ (1) = E
[
x (1)

t

]
The covariance of two variables x (1)

t and x (2)
t is defined by

cov
[
x (1)

t , x (2)
t

] = E
[(

x (1)
t − x̄ (1)

)(
x (2)

t − x̄ (2)
)] = E

[
x (1)

t x (2)
t

]− x̄ (1) x̄ (2)

and the correlation between the two stocks is defined by

ρ12 = cov
[
x (1)

t , x (2)
t

]
σ1σ2

,

(B) The volatility of AS(1)
t where A is a constant is given by

σ 2
A1 = var

[
ln
(

AS(1)
t

)] = var
[
const. + x (1)

t

] = var
[
x (1)

t

] = σ 2
1

(Note the radical difference from the result var[Ax] = A2 var[x].)
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(C) The volatility of the product of two stochastic prices S(1)
t and S(2)

t is obtained as follows:

σ 2
12 = var

[
ln S(1)

t S(2)
t

] = var
[
x (1)

t + x (2)
t

]
= E

[{(
x (1)

t − x̄ (1)
)+ (x (2)

t − x̄ (2)
)}2] = σ 2

1 + σ 2
2 + 2 cov

[
x (1)

t , x (2)
t

]
or

σ 2
12 = σ 2

1 + σ 2
2 + 2ρ12σ1σ2

Similarly

σ 2
1/2 = var

[
ln S(1)

t

/
S(2)

t

] = σ 2
1 + σ 2

2 − 2ρ12σ1σ2

or alternatively expressed

σ 2
1/St

= σ 2
St

; ρ1/2 = −ρ1/2

(D) The variances of a number of products and quotients are used in the text and the results
are recorded all together here:

• S(1)
t

(
AS(2)

t

)
σ 2

1(A2) = var
[
x (1)

t + x (2)
t + A

] = σ 2
1 + σ 2

2 + 2ρ12σ1σ2

• (S(1)
t S(2)

t

)
S(1)

t σ 2
(12)1 = var

[
2x (1)

t + x (2)
t

] = 4σ 2
1 + σ 2

2 + 4ρ12σ1σ2

• (S(1)
t S(2)

t

)/(
AS(1)

t

)
σ 2

12/A1 = var
[
x (2)

t − const.
] = σ 2

2

A.2 RANDOM WALK

(i) A drunk leaves a bar one evening and sets out for home. His legs have a will of their own, but
follow these rules:

� He takes a step at regular intervals of time δt .
� Sometimes he steps forward a distance U.
� Sometimes he steps back a distance D.
� The probability of a U-step is p and the probability of a D-step is (1 − p).

We are curious to know how far he progresses and what his chances are of reaching home.
The progress of our drunk is a standard example of a stochastic process known as a random

walk. In fact, this is a specific example of a more general class of stochastic processes known as
Markov processes. In such processes, the next step is completely independent of the distance
traveled in the last n steps.

The progress of the drunk can be represented by the grid of Figure A2.1. The distance xn

of the drunk from the bar after n steps is a random variable; but this variable can only assume
the discrete values shown, since the forward and backward steps are fixed in length.

The expected position of the drunk after the first step is

E[x1] = pU − (1 − p)D (A2.1)

and the variance is

var[x1] = E
[
x2

1

]− E2[x1]

= pU 2 + (1 − p)D2 − {pU − (1 − p)D}2

= p(1 − p)(U + D)2 (A2.2)
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nx

n

D−

U

2D−

U-D

2U

0
U-2D

2U-D

3U

3D−

Figure A2.1 Random walk grid

Referring to Figure A2.1, consider the probability of reaching the point “2U − D” after three
steps. This could be achieved with three sequences: UDD, UDU, or DUU. Each path is achieved
with equal probability p2(1 − p) so that the probability of reaching this point is 3p2(1 − p).

Generalizing this approach, the probability of achieving i U-steps out of a total of N steps is

N !

i!(N − i)!
pi (1 − p)N−i

and the distance traveled is {iU − (N − i)D}. This discrete distribution is known as the bino-
mial distribution, and we can directly calculate the expected value and variance for the distance
traveled in N steps. However, we can save ourselves a lot of algebra by using the properties of
so-called moment generating functions.

(ii) Moment Generating Functions: Moment generating functions (MGFs) are much used in
theoretical statistics and have the following properties:

1. If y is a random variable, then the MGF M[�] is defined by

M(�) = E[e�y]

2. The moments of the variable y are given by

µλ = E[yλ] = ∂λM[�]

∂�λ

]
�=0

3. If y1, y2, . . . , yN are independent random variables, then the moment generating function
of the sum y1 + y2 + · · · + yN is equal to the product of the individual MGFs.

4. Every distribution has a unique MGF.
5. It may be shown by straightforward integration that the normal distribution N (µt, σ 2t) has

an MGF given by

M(�) = e(µ�+ 1
2 σ 2�2)t
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6. An algebraic slog shows that for a standard normal x (µ = 0; σ 2 = 1):

E[xλ] =




0 odd λ

(λ − 1)!

2( 1
2 λ−1)

(
1
2λ − 1

)
!

even λ

(iii) Moment Generating Function and Random Walk: The MGFs for a single step is given by

M(�) = E[e�x ] = {p e�U + (1 − p) e−�D}

so that by property 3 of the last subsection, the MGF for the distance traveled in N independent
steps is given by

MN (�) = {p e�U + (1 − p) e−�D}N (A2.3)

Property 2 above yields the following results by simple differentiation:

E[xN ] = ∂M[�]

∂�

]
�=0

= N {pU − (1 − p)D}

var[xN ] = ∂2M(�)

∂�2

]
�=0

−
{

∂M(�)

∂�

]
�=0

}2

= N p(1 − p)(U + D)2 (A2.4)

Comparing these with equations (A2.1) and (A2.2) leads one to the unsurprising result that the
expected value of the distance covered in N steps is N times the expected value of the distance
in one step; but it also leads us to the less intuitive result that the variance of N steps is N times
the variance of one step.

(iv) Random Walk and Normal Distribution: We now examine the case where the number of steps
N in a random walk becomes very large, while the time between steps δt and the step lengths
U and D become very small. T = N δt is the total time taken by the random walk. Equation
(A2.4) may be rewritten in differential format as

E[xN ] = N {pU − (1 − p)D} ⇒ E[xT ] = T

δt
{pU − (1 − p)D} = µT

var[xN ] = N p(1 − p)(U + D)2 ⇒ var[xT ] = T

δt
p(1 − p)(U + D)2 = σ 2T

or

{pU − (1 − p)D} = µ δt ; p(1 − p)(U + D)2 = σ 2 δt (A2.5)

This is of course just another way of writing equations (A2.1) and (A2.2) in terms of instan-
taneous drift and variance. The reader now needs to watch carefully, while we manipulate the
second of these equations into an alternative form which we use later.

It is assumed that δt is very small, so that terms O[(δt)2] can be safely ignored. Let us repeat
the derivation of equation (A2.2) in the present format:

σ 2 δt = var[x] = E[x2] − E2[x] = pU 2 + (1 − p)D2 − µ2(δt)2
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But the last term in this equation is O[(δt)2] and may be dropped, leaving us with the relation-
ships

{pU − (1 − p)D} = µ δt ; {pU 2 + (1 − p)D2} = σ 2 δt (A2.6)

The second of these equations is clearly not as accurate as the exact forms, and may trouble
the reader somewhat; but to O[δt] it is perfectly acceptable and we will encounter many other
places where terms of O[(δt)2] are ignored.

Return now to equation (A2.3), take the logarithm and substitute T = N δt . Then use the
following expansions of ea and ln(1 + a) for small a: ea = 1 + a + 1

2 a2 + · · · and ln(1 + a) =
a − 1

2 a2 + · · ·.
ln MN [�] = N ln{p e�U + (1 − p) e�D}

= T

δt
ln
{
1 + (pU + (1 − p)D)� + 1

2 (pU 2 + (1 − p)D2)�2 + · · ·}
= T

δt
ln
{
1 + (µ� + 1

2σ 2�2
)
δt + O[(δt)2] + · · ·}

≈ (
µ� + 1

2σ 2�2
)
T

or finally

MN [�] = e(µ�+ 1
2 σ 2�2)T

From property 5 of moment generating functions given in Section A.2(ii), the random walk
taking a time T converges to the normal distribution N (µT, σ 2T ). The closer p is to 1

2 the faster
the convergence. Figure A2.2 compares the binomial and normal distributions (using p = 1

2 )
for different values of N.

n=3 n=5

n=6 n=8

Figure A2.2 Binomial and normal distributions

(v) Step Lengths and Probabilities: In the last subsection, the random walk was described in terms
of the overall drift µ and variance σ 2 rather than step lengths U, D and transition probabilities
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p, (1 − p). There is not a unique correspondence between the choice of the parameters U, D, p
and the resultant µ and σ 2: for example, a high drift rate µ could be achieved by having equal
probabilities for U and D (i.e. p = 1

2 ) together with a large U-step compared to the D-step;
or alternatively by equal U and D but a high probability of up-move p. There are in fact an
infinite number of choices of U, D, p to produce a given µ and σ 2. Two combinations for U,
D and p are most commonly used in practice:

� Let U = D(= �): then equations (A2.6) become

(2p − 1)� = µ δt ; �2 = σ 2 δt

or

� = σ
√

δt ; p = 1

2

{
1 + µ

√
δt

σ

}
(A2.7)

� Let p = 1
2 : then equations (A2.5) become

U − D = 2µ δt ; U + D = 2σ
√

δt

or

U = µ δt + σ
√

δt ; D = −µ δt + σ
√

δt (A2.8)

Note that to get these two results, we have used the alternative equations (A2.5) and (A2.6),
which are equivalent to O[δt].

(vi) If the reader looks around the literature on random walk, he is likely to find alternative treatments
of the subject, using a three-pronged process: the drunk takes a step forward, a step back or
remains stationary each period. The results obtained using such a process are similar to those
using a two-pronged process; this is apparent from Figure A2.3 which shows that a large three-
pronged step can be constructed from two two-pronged steps. However a three-pronged tree
does give us an extra degree of flexibility which will be very useful when we consider random
walks in which the variance σ 2 and drift µ are not constant, but depend on the net distance the
drunk has traveled and the time he has been going.

U

Two pronged Three pronged

2 ¥ Two pronged
= three pronged

D
D

M

2D

U-D

2U

U1p

1 21 - p - p

2p1 - p

p U

D
D

M

2D

U-D

2U

U1p

1 21 - p - p

2p1 - p

p

Figure A2.3 Binomial vs. trinomial
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When we say flexibility we really mean greater ability to choose parameters. Thus in equa-
tion (A2.6) we have two equations for three unknowns (U, D and p) ; this gives us the flexibility
to make the choice between the two alternatives set out in the previous subsection – or indeed, an
infinite number of other possible choices. Using the notation of Figure A2.3, the three-pronged
analogs of equation (A2.6) are

{puU − pd D + (1 − pu − pd )M} = µ δt

{puU 2 + pd D2 + (1 − pu − pd )M2} = σ 2 δt (A2.9)

This time we have two equations for five unknowns, leaving three degrees of freedom to play
with. Most schemas that the reader is likely to encounter impose the conditions M = 0 and
U = −D (= �), so that we may solve for probabilities:

pu = 1

2

{
σ 2

�2
+ µ

�

}
δt ; pd = 1

2

{
σ 2

�2
− µ

�

}
δt (A2.10)

and we still have a degree of freedom left over!

A.3 THE KOLMOGOROV EQUATIONS

(i) In the last section we demonstrated that a random walk or binomial process approaches a normal
distribution N (µT, σ 2T ) in the continuous limit, i.e. an infinite number of infinitesimally small
steps. This is equivalent to saying that if a particle is at position xt at time t, then the probability
that it is between xT and xT + dxT at time T is

f 〈xT , T | xt , t〉 dxT = 1

σ
√

2π (T − t)
exp

[
−1

2

(
xT − xt − µ(T − t)

σ
√

(T − t)

)2
]

dxT (A3.1)

n m

N

i
j

l
0

Figure A3.1 Chapman–Kolmogorov intermediate states

This formula for the so-called transition probability density function describes a particle under-
going unrestricted, one-dimensional Brownian motion. But suppose the motion is in some way
constrained: suppose in the example
of our drunk doing a random walk that
there was a deep hole in the road, or
that some joker had attached an elastic
to his belt; or suppose that the drunk
starts sobering up, so that the proba-
bilities of forward and backward steps
start gradually changing. To describe
these problems (in continuous time)
we need the Kolmogorov equations,
which are partial differential equations
always satisfied by the transition den-
sity function; just the boundary condi-
tions change to cater for the constraints
of any particular problem.

(ii) Chapman–Kolmogorov Equation: (The nomenclature for the various equations is not quite
standard but we try to use the most common). Imagine a binomial grid of the type shown in
Figure A3.1, but with a very large number of steps. Imagine a particle that starts at position
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i at time step n and later arrives at position j at time step N . The probability of making this
particular transition is written P〈x N

j | xn
i 〉. Now consider where the particle might have been

at time step m: it would have been at one of the several positions l, which are a subset of
all the positions that might be reached by a particle starting at 0. The probability of going
from i to j must equal the sum of the probabilities of going via each of the possible l
positions, i.e.

P
〈
x N

j

∣∣ xn
i

〉 = ∑
all possible l

P
〈
x N

j

∣∣ xm
l

〉
P
〈
xm

l

∣∣ xn
i

〉
(A3.2)

This is the Chapman–Kolmogorov equation in discrete time.

(iii) Before going on, it is worth repeating a simple point made in several places in this book; if the
reader does not get it completely straight here, he will get very mixed up in what follows.

0 is always some fixed “starting point” in time, T is a maturity date (most usually of an
option) and t is some variable date. In most options applications, we use t = 0 as “now” and
T is the time to maturity of the option.

In the following sections, we investigate variations in both t and T and we must be very
careful: a small positive change δt shortens the time to maturity (T − t) while a positive δT
lengthens it. In virtually everything in the rest of the book, dependence on t and T is deemed
to mean dependence on (T − t); we have the following equivalence when differentiating with
respect to time:

∂

∂t
≡ − ∂

∂T

Un
ix

n+1
i-1x

N
jx

p

n+1
i+1x

1 - p

U

D

Figure A3.2 Kolmogorov backward eq-
uation constant µ and σ 2

(iv) Kolmogorov’s Equations with Constant µ and σ2:

(A) Equation (A3.2) (Chapman–Kolmogorov) in the
case where m = n + 1 is

P
〈
x N

j

∣∣ xn
i

〉 = p P
〈
x N

j

∣∣ xn+1
i+1

〉+ (1 − p) P
〈
x N

j

∣∣ xn+1
i−1

〉
This is illustrated in Figure A3.2.

Consider the continuous limit (infinite number
of infinitesimal terms) of the last equation and
rewrite terms as follows:

P
〈
x N

j

∣∣ xn
i

〉 → f 〈xT , T | xt , t〉 dxt

P
〈
x N

j

∣∣ xn+1
i+1

〉 → f 〈xT , T | xt + U, t + δt〉 dxt

P
〈
x N

j

∣∣ xn+1
i−1

〉 → f 〈xT , T | xt − D, t + δt〉 dxt

The previous equation can then be written

f 〈xT , T | xt , t〉 = p f 〈xT , T | xt + U, t + δt〉 + (1 − p) f 〈xT , T | xt − D, t + δt〉
We simplify the notation by writing f 〈xT , T | xt , t〉 = f and use the following Taylor
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expansion up to O[δt]:

f 〈xT , T | xt + δxt , t + δt〉 = f + ∂ f

∂t
δt + ∂ f

∂xt
δxt + 1

2

∂2 f

∂x2
t
δx2

t

Our equation then becomes

0 = ∂ f

∂t
δt + {pU − (1 − p)D} ∂ f

∂xt
+ 1

2
{pU 2 + (1 − p)D2}∂

2 f

∂x2
t

Use the definitions of instantaneous drift and variance given in equations (A2.6) to give

∂ f

∂t
+ µ

∂ f

∂xt
+ 1

2
σ 2 ∂2 f

∂x2
t

= 0 (A3.3)

which is known as the Kolmogorov back-
ward equation.

Un
ix

n+1
i-1x

N
jx

n
ip

n+1
i+1x

n
i1 - p

n
iU
n
iD

Figure A3.3 Kolmogorov forward
equation constant µ and σ 2

(B) Suppose we repeat the calculations of sub-
section (a) above, but instead start with the
intermediate time point as m = N − 1. This
is illustrated in Figure A3.3. The Chapman–
Kolmogorov equation becomes

P
〈
x N

j

∣∣ xn
i

〉 = (1 − p)P
〈
x N−1

j+1

∣∣ xn
i

〉+ p P
〈
x N−1

j−1

∣∣ xn
i

〉
and its continuous time equivalent is

f 〈xT , T | xt , t〉 = (1 − p) f 〈xT + D, T − δT | xt , t〉 + p f 〈xT − U, T − δT | xt , t〉

Precisely the same steps as before yield the Kolmogorov forward equation, also known
as the Fokker Planck equation:

− ∂ f

∂T
− µ

∂ f

∂xT
+ 1

2
σ 2 ∂2 f

∂x2
T

= 0 (A3.4)

Note that the difference between the forward and backward equations is only in the sign
of the “convection term”, since ∂ f /∂T = −∂ f /∂t .

This derivation was fairly simple, although perhaps not the most rigorous ever seen.
A substitution of the probability density function given in Section A.3(i) shows that this
function is a solution of both the backward and forward equations. In later sections of
this Appendix we will solve the backward equation with other boundary conditions. In
Appendix A.4 it is shown that the backward equation is in fact just two steps away from
the Black Scholes equation.

(v) Variable µ and σ2: In the early part of this book we assume that µ (with its risk-neutral
equivalent r) and σ 2 are constant. Later, we expand the theory to cover a more realistic world.
The Kolmogorov equations with variable µ and σ 2 can be derived using the same approach as
previously, but assuming U, D and p to be variable.

316



A.3 THE KOLMOGOROV EQUATIONS

Un
ix
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n
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iD

Figure A3.4 Kolmogorov backward eq-
uation variable µ and σ 2

Figure A3.4 explicitly shows this variation for the
Kolmogorov backward equation. In the derivation
of this particular equation in continuous time, there
is very little change from what we did in the constant
µ and σ 2 version. U, D and p develop suffixes n
and i, since their values depend on which node is
considered. The instantaneous drift and variance are
given by

µn
i δt = pn

i U n
i − (1 − pn

i

)
Dn

i and
(
σ n

i

)2
δt = pn

i

(
un

i

)2 + (1 − pn
i

)(
dn

i

)2
The variable µ and σ 2 version of the Kolmogorov backward equation is then given by

∂ f

∂t
+ µ(xt , t)

∂ f

∂xt
+ 1

2
σ 2(xt , t)

∂2 f

∂x2
t

= 0 (A3.5)

u

dn
ix N

jx

N -1
j+1x

N -1
j-1x

N-1
j-1p

N-1
j+11 - p

N-1
j-1U

N-1
j+1D

Figure A3.5 Kolmogorov forward equation
variable µ and σ 2

(vi) Fokker Planck Equation with Variable µ and
σ2: Although the transition from fixed to vari-
able parameters was simple for the Kolmogorov
backward equation, it is a lot harder for the
forward equation. This is readily understood by
examining Figure A3.5. The difficulty is that
the two nodes from which a jump is made
to the final node have different associated val-
ues of p, U and −D. A little more care is there-
fore needed in deriving the equation.

Once again, we start with the Chapman–
Kolmogorov equation

P
〈
x N

j

∣∣ xn
i

〉 = (1 − pN−1
j+1

)
P
〈
x N−1

j+1

∣∣ xn
i

〉+ pN−1
j−1 P

〈
x N−1

j−1

∣∣ xn
i

〉
which can be put into continuous time notation using
the simplifying notation illustrated in the accompany-
ing diagram:

N -1
j+1x

N-1
j -1x

N
jx

+D
-U

+1 - p

-p

f 〈xT , T | xt , t〉 = (1 − p+) f 〈xT + D+, T − δT | xt , t〉
+ p− f 〈xT − U−, T − δT | xt , t〉

We apply two Taylor expansions on the right-hand side
of this equation, one for the function (1 − p) f and the
other for the function p f , to give

f = (1 − p) f − ∂

∂T
{(1 − p) f } δT

+ ∂

∂xt
{(1 − p) f }D+ + 1

2

∂2

∂x2
t
{(1 − p) f }(D+)2

+ p f − ∂

∂T
{p f } δT − ∂

∂xt
{p f }U− + 1

2

∂2

∂x2
t
{p f }(U−)2
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or collecting terms

− ∂ f

∂T
− ∂

∂xT
{(pU− − (1 − p)D+) f } + 1

2

∂2

∂x2
T

{(p(U−)2 − (1 − p)(D+)2) f } = 0

Using equations (A2.6) for the instantaneous drift and variance, with the following approxi-
mations:

p(xT , T )U− − (1 − p(xT , T ))D+ ≈ p(xT , T )U (xT , T ) − (1 − p(xT , T ))D(xT , T )

→ µ(xT , T )δT

p(xT , T )U−2 + (1 − p(xT , T ))D+2 → σ 2(xT , T ) δT

finally gives the Fokker Planck equation as

− ∂ f

∂T
− ∂

∂xT
{µ(xT , T ) f } + 1

2

∂2

∂x2
T

{σ 2(xT , T ) f } = 0 (A3.6)

A.4 PARTIAL DIFFERENTIAL EQUATIONS

(i) Black Scholes vs. Kolmogorov Backward Equation: The Black Scholes equation is

∂u

∂T
= (r − q)S0

∂u

∂S0
+ 1

2
S2

0σ 2 ∂2u

∂S2
0

− ru (A4.1)

where u is the price of a derivative at time t = 0. Let us write v = u erT , so that v is the
expected future payoff of the derivative in a risk-neutral world. Substituting this in the last
equation simply gives

∂v

∂T
= (r − q)S0

∂v

∂S0
+ 1

2
S2

0σ
2 ∂2v

∂S2
0

(A4.2)

Let us further make the change of variable x0 = ln S0. Substitute this in the last equation and
slog through the algebra to give

∂v

∂T
= (r − q − 1

2σ 2
) ∂v

∂x0
+ 1

2
σ 2 ∂2v

∂x2
0

(A4.3)

Remember this is just the Black Scholes equation with a change of variable. In the last section
we introduced the Kolmogorov equations, which for constant µ and σ 2 were written

Backward equation:
∂ f

∂T
= µ

∂ f

∂xt
+ 1

2
σ 2 ∂2 f

∂x2
t

Forward equation:
∂ f

∂T
= −µ

∂ f

∂xT
+ 1

2
σ 2 ∂2 f

∂x2
T

(A4.4)

The similarity of the Black Scholes equation written in the form of equation (A4.3) to the
Kolmogorov backward equation is striking. This is not really surprising as they are basically
the same equation, which can be demonstrated as follows.

� In Section 3.2 it was seen that in a risk-neutral world, xt = ln(St/S0) is normally distributed
with growth rate µ = r − q − 1

2σ 2 and variance per unit time of σ 2. The Kolmogorov
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backward equation can then be written

∂ f 〈xT , T | x0, 0〉
∂T

= (r − q − 1
2σ 2
)∂ f 〈xT , T | x0, 0〉

∂x0
+ 1

2
σ 2 ∂2 f 〈xT , T | x0, 0〉

∂x2
0

� The expected future value of a derivative v(S0) is defined by

v(S0) =
∫

all possible ST

V [ST ] f 〈xT , T | x0, 0〉 dxT

where V [ST ] is the payoff of the derivative at time T.
� Multiply the risk-neutral Kolmogorov backward equation by V [ST ] and integrate over all ST :∫

V [ST ]

{
− ∂ f

∂T
+ (r − q − 1

2σ 2
) ∂ f

∂x0
+ 1

2
σ 2 ∂2 f

∂x2
0

}
dxT = 0

=
{
− ∂

∂T
+ (r − q − 1

2σ 2
) ∂

∂x0
+ 1

2
σ 2 ∂2

∂x2
0

}∫
V [ST ] f 〈xT , T | x0, 0〉 dxT

But the integral is just the future expected payoff so we have

−∂v(S0)

∂T
+ (r − q − 1

2σ 2
)∂v(S0)

∂x0
+ 1

2
σ 2 ∂2v(S0)

∂x2
0

= 0

which is the Black Scholes equation written in the form of equation (A4.3).

(ii) The Heat Equation; Simple Form: The reader might guess that the solution of these PDEs
plays an important role in option theory; but he probably does not realize just how important
this role really is. Most techniques for calculating option prices, even when they seem on the
surface to have little connection with PDEs, can be described as the implied solution of a PDE.
This will emerge in the following sections.

The Kolmogorov and Black Scholes equations belong to a class known as parabolic PDEs,
which were the subject of intense study long before modern option theory was invented. They
were of interest to physicists and engineers as they described certain physical phenomena:
anyone with any exposure to financial options knows that they were known as the heat equations
or the diffusion equations; on the other hand, surprisingly few people know why in anything
but a vague way. We will use a little space to describe the simple underlying physics, as it
makes the equations easier to visualize and understand.

Think back to high school physics and the elementary study of “heat” (or “thermal energy”
or “internal energy”). Heat flowing into an object makes its temperature go up. The amount by
which it goes up depends on how big it is and what material it is made of. The amount of heat
needed to make the temperature go up by 1◦ is called the thermal capacity.

Consider a long, thin, straight and well-insulated wire, in which the temperature is not
uniform but varies over the length of the wire and over time. Heat will flow from hotter to
colder parts of the wire, which is illustrated in Figure A4.1. The notation is as follows:

θ(x, T ) = temperature as a function of position in the wire and time; usually measured in
degrees.
ϕ(x, T ) = rate of flow of heat along the wire; measured in units such as calories per second.

Fourier’s law of heat flow states that the rate of flow of heat is proportional to the temper-
ature gradient in the wire, i.e. ϕ(x, T ) ∝ ∂θ (x, T )/∂x . Consider the increase over time δT
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x x+dx

j(x + dx, T)j(x, T)

q(x,T)

Figure A4.1 Heat flow in a wire

of the heat (thermal energy) δE within a small element of length δx . This may be written in
two ways:

δE = [ϕ(x + δx, T ) − ϕ(x, T )] δT = ∂ϕ

∂x
δx δT ∝ ∂2θ

∂x2
δx δT

where the last step uses Fourier’s heat flow law. Alternatively, we may write

δE = thermal capacity × temperature increase

∝ (A δx) δθ ∝ ∂θ

∂T
δx δT

Equating these two forms gives the heat equation:

∂θ

∂T
= a

∂2θ

∂x2

Figure A4.1 can be taken to represent not a heat-conducting wire, but a thin tube of water. A
chemical is dissolved in the water but the concentration varies in different parts of the tube. The
chemical will diffuse from points of higher to points of lower concentration, at a rate which
is proportional to the concentration gradient. Precisely the same reasoning can be applied as
before to give a “diffusion equation” which has the same form as the heat equation.

(iii) The Heat Equation; Alternative Forms: There are three modifications, each corresponding to
a different physical phenomenon, which change the shape of the simple heat equation described
in the last subsection.

(A) Heat Source: Suppose there is a source producing heat within the thin conducting wire
(Figure A4.2). This could for example be produced electrically or chemically. The amount
of heat produced in the small segment δx in time δT is written as q(x, T )δx δT , where

x x+dx

heat source

Figure A4.2 Heat source
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we assume that the heating is proportional to the length of the segment. The heat equation
then becomes

∂θ

∂T
= a

∂2θ

∂x2
+ Q(x, T )

(B) Heat Loss: In the derivation of the heat equation it was assumed that the thin wire is
perfectly insulated so that there is no heat loss from the wire. Now suppose that the
insulation is not perfect (Figure A4.3). The effect on the heat flow in the small segment
might be the same as the effect of the heat source of the last paragraph, but with the sign
reversed. But suppose further that the heat flow across the insulator is proportional to the
temperature of the wire; this is Fourier’s law of heat flow again. The heat equation would
then be written

∂θ

∂T
= a

∂2θ

∂x2
+ cθ

x x+dx

heat loss

Figure A4.3 Heat loss

For heat loss, c would be negative; positive c describes heat gain through the insulator.
(C) Convection: Let us turn our attention from the physical properties of heat transfer to

diffusion. Suppose that instead of the liquid in the tube being stationary, it is flowing at a
speed v (Figure A4.4). An additional term must be added to the diffusion equation, since
even if there is no diffusion, the concentration at x would change during the interval δT
by

δθ = ∂θ

∂x
δx = ∂θ

∂x

∂x

∂T
δT = v

∂θ

∂x
δT .

The diffusion equation with convection can therefore be written

∂θ

∂T
= a

∂2θ

∂x2
+ b

∂θ

∂x

x

Fluid velocity = v

x+dx

Figure A4.4 Convection
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In summary, a general form of the heat/diffusion equation can be written

∂θ

∂T
= a

∂2θ

∂x2
+ b

∂θ

∂x
+ cθ + Q(x, T )

where b, c and Q can be positive or negative but a must be positive. For reasons which are
obvious from the preceding paragraphs, the terms on the right-hand side of this equation are
known as the diffusion, convection, heat loss and heat source terms respectively.

(iv) Putting the heat source term to one side for the moment, the heat equation can be written

∂θ

∂T
= a

∂2θ

∂x2
+ b

∂θ

∂x
+ cθ

This general heat equation can be reduced to the simple form by straightforward transformation
of variables.

� The last term can be eliminated by a change of variable θ = ecT ψ , which was used in Section

A.4(i) to simplify the Black Scholes equation. We are left with ∂φ

∂T = a ∂2φ

∂x2 + b ∂φ

∂x .
� Substituting a change of variable φ = ψ exp[− b

2a x − b2

4a T ] gives ∂ψ

∂T = a ∂2ψ

∂x2 .
� Finally, the last equation can be transformed to ∂ψ

∂τ
= ∂2ψ

∂x2 simply by changing the scale of
the time variable.

It was assumed that the coefficients a, b and c are constant. In a later part of the book we
consider cases where these are functions of x and T. In that case we cannot achieve the simple
transformations, and we really have little hope of solving the heat equation except by numerical
methods.

The equation that we are particularly interested in solving is the Black Scholes equation.
Using these transformations and the material of subsection (i) we can make the transformation

∂u

∂T
= (r − q)S0

∂u

∂S0
+ 1

2
S2

0σ
2 ∂2u

∂S2
0

− ru ⇒ ∂ψ

∂T ′ = ∂2ψ

∂x2

u(S0, T ) = e−rT
{
e−k x−k2T ψ(x, T ′)

}
; x = ln S0

T ′ = 1

2
σ 2T ; k = r − q − 1

2σ 2

σ 2
= m

σ 2
(A4.5)

A.5 FOURIER METHODS FOR SOLVING THE HEAT EQUATION

(i) We will focus on the heat equation ∂θ/∂τ = ∂2θ/∂x2, since it was shown in the last section that
more complicated versions of the equation can be reduced to this form by simple transformation.
A differential equation can only be solved once we are given the boundary and initial conditions.
There are three broad categories of boundary conditions which we consider: first are finite wires
of length L where the ends are maintained at fixed temperatures. Then there is a semi-finite
wire where one end has a fixed temperature and the other end stretches to infinity; and finally,
wires which stretch to infinity in both directions.

When we deal with options we are normally interested in all possible stock price movements
between 0 and ∞, i.e. values of x = ln S between −∞ and ∞; this corresponds to the boundary
conditions for an infinite wire. The semi-infinite solution corresponds to a stock price which is
constrained to move only on one side or the other of a fixed level; and the finite wire corresponds
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to movement constrained between two fixed levels. Some readers might recognize these two
latter cases as potentially solving barrier option problems.

The heat equations that interest us particularly are the transformed Black Scholes equation
and the corresponding Kolmogorov equation. Referring to equation (A4.5), a couple of obser-
vations about the underlying variables T and x are in order. Looking back at the derivation of
the heat equation for conduction in a thin wire, it is clear that T is a measure of calendar time:
θ (x, T ) is the temperature at position x and time T. θ(x, 0) is the temperature distribution in
the wire at the beginning and is used as the initial condition in solving the differential equation.
By contrast, T ′ in equation (A4.5) is a measure of the time to maturity of an option; T ′ = 0
means that the maturity of the option has been reached so that ψ(x, 0) is the (transform of)
the final payout of the option. This is the “initial condition” used to solve the equation.

Heat equations with these types of boundary conditions are soluble using two different
(but related) techniques: Fourier methods and Green’s functions. These are large areas of
mathematics in their own right, so we merely give the main signposts showing where the
theory comes from and present the major results in a form which is immediately applicable
to option theory. Many readers will already be familiar with these techniques, but those who
are not will not find themselves at too much of a disadvantage. The fact is that there are only
a few European options whose prices can be obtained from an analytical solution of the heat
equation: calls, puts and barrier related options. For the most part, numerical approximations
must be used to solve the differential equations.

L 2L

f(x)

x

Figure A5.1 Periodic function

(ii) Fourier Series: In general, any periodic function
(Figure A5.1) can be represented by an infinite
series as follows:

f (x) = a0

2
+

∞∑
n=1

{
an cos

nπ

L
x + bn sin

nπ

L
x
}

(A5.1)

where the coefficients an and bn are given by Euler’s formulas:

an = 2

L

∫ L

0
f (y) cos

nπ

L
y dy; bn = 2

L

∫ L

0
f (y) sin

nπ

L
y dy (A5.2)

These last two formulas follow immediately if we multiply the Fourier series by cos(nπ/L)y
or sin(nπ/L)y and integrate, using the following elementary results:

1

π

∫ 2π

0
cos nθ sin mθ dθ = 1

π

∫ 2π

0
cos nθ cos mθ dθ = 1

π

∫ 2π

0
sin nθ sin mθ dθ = 1[m=n]

where 1[m=n] = 1 if m = n and 0 otherwise.

(iii) Fourier Integrals: The Fourier representation works fine for a function which is periodic. We
can also use it to analyze a function defined over a finite range; in this latter case, we use
a periodic representation but ignore values outside our range of interest. But the technique
cannot be used if our domain of interest is infinite, although the theory can be pushed further
to yield the Fourier integral, which is the continuous limit as we allow the periodic distance L
to approach ∞.
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The analog of the Fourier series for a non-periodic function is the following Fourier integral:

f (x) =
∫ ∞

0
{a(ω) cos ωx + b(ω) sin ωx} dω

where the coefficients a(ω) and b(ω) are given by

a(ω) = 1

π

∫ +∞

−∞
f (y) cos ωy dy; b(ω) = 1

π

∫ +∞

−∞
f (y) sin ωy dy

Substituting these last two expressions into the Fourier integral gives

f (x) = 1

π

∫ +∞

0
dω

∫ +∞

−∞
f (y) cos ω(x − y) dy

cos ω(x − y) is an even function of ω, i.e. function (ω) = function (−ω). Therefore, the integral
with respect to y is also an even function. But any even function of ω integrated from 0 to
∞ is equal to the same function integrated from −∞ to 0; or equivalently, equal to twice the
integral from −∞ to +∞. Thus

f (x) = 1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f (y) cos ω(x − y) dy

Odd functions can be written function (ω) = −function (−ω) which allows us to use the
preceding reasoning to write

0 = 1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f (y) sin ω(x − y) dy

Using de Moivre’s theorem eiθ = cos θ + i sin θ gives

f (x) = 1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
f (y){cos ω(x − y) + i sin ω(x − y)} dy

= 1

2π

∫ +∞

−∞

∫ +∞

−∞
f (y) eiω(x−y) dω dy

This is known as the complex Fourier integral.

(iv) Fourier Transforms: Rearrange the terms in the complex Fourier integral as follows:

f (x) = 1√
2π

∫ +∞

−∞
eiωx

[
1√
2π

∫ +∞

−∞
f (y) e−iωy dy

]
dω

We now define the Fourier transform � and the inverse Fourier transform �−1 as

�[ f (x)] = F(ω) = 1√
2π

∫ +∞

−∞
f (x) e−iωx dx Fourier transform

�−1[F(ω)] = f (x) = 1√
2π

∫ +∞

−∞
F(ω) eiωx dω Inverse Fourier transform

These transforms have the following properties which make them useful in solving PDEs:
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(A) For a function θ(x, T )

∂

∂T
�[θ ] = �

[
∂θ

∂T

]

(B) If lim|x |→∞ θ (x, T ) → 0, integrating by parts gives

�
[

∂θ

∂x

]
= 1√

2π

∫ +∞

−∞

∂θ

∂x
e−iωx dx = iω�[θ ]

�
[

∂2θ

∂x2

]
= −ω2�[θ ]

(C) A convolution of two functions f (x) and g(x) is designated by the notation ( f · g)(x) and
is defined by

( f · g)(x) = 1√
2π

∫ +∞

−∞
f (x − y)g(y) dy

The Fourier transform of a convolution is

�[( f · g)(x)] = 1√
2π

∫ +∞

−∞
e−iωx dx

1√
2π

∫ +∞

−∞
f (x − y)g(y) dy

= 1√
2π

∫ +∞

−∞
dz

1√
2π

∫ +∞

−∞
e−iω(z+y) f (z)g(y) dy

Let x − y = z so dx = dz

�[( f · g)(x)] = �
[

1√
2π

∫ +∞

−∞
f (x − y)g(y) dy

]
= �[ f (x)] × �[g(x)] (A5.3)

(D) For a Fourier transform to exist, the function f (x) must approach zero fairly fast as |x |
increases. Examples which do not do so are a constant, sin x , or even e−|x |; but if the
transform does exist, it is unique, i.e. if we know the transform, we can look up the inverse
in a set of tables.

A.6 SPECIFIC SOLUTIONS OF THE HEAT EQUATION
(FOURIER METHODS)

In this section we will solve ∂θ/∂T = ∂2θ/∂x2 for simple examples of each of the three classes
of problem: finite wire, infinite wire and semi-infinite wire.

(i) Finite Wire:

Boundary Conditions: Insulated wire of length L has its ends maintained at a temperature 0◦.
Initial Conditions: The initial temperature in the wire as a function of position is θ (x, 0).

Any function defined over a length L can be described as a periodic function for which we
ignore values outside the region 0 to L . It may therefore be represented by the Fourier series

θ(x, T ) = a0

2
+

∞∑
n=1

{
an cos

nπ

L
x + bn sin

nπ

L
x
}

(A6.1)
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0 L

q(x, 0)

q(x, T)

Figure A6.1 Finite conductor

We assume that the dependence on T is confined
to the coefficients an and bn . This is broadly
equivalent to saying that the temperature pro-
file remains roughly the same as it decays to an
eventual zero throughout – rather than having
heat pile up unexpectedly in certain areas. See
Figure A6.1.

The first observation is that if θ (0, T ) = 0, then
an = 0 for all n. Substituting the remainder of the
Fourier series into the heat equation then gives

∞∑
n=1

∂bn(T )

∂T
sin

nπ

L
x = −

∞∑
n=1

(nπ

L

)2
bn(T ) sin

nπ

L
x

Equating individual coefficients of sin(nπ/L)x gives

∂bn(T )

∂T
= −

(nπ

L

)2
bn(T ) or bn(T ) = bn(0)exp

[
−
(nπ

L

)2
T

]

The initial condition is written θ (x, 0) =∑∞
n=1 bn(0) sin(nπ/L)x and from equation (A5.2)

we have

bn(0) = 2

L

∫ L

0
θ (y, 0) sin

nπ

L
y dy

Substituting all this back in equation (A6.1) gives

θ (x, T ) =
∞∑

n=1

[
2

L

∫ L

0
θ (y, 0) sin

nπ

L
y dy

]
exp

[
−
(nπ

L

)2
T

]
sin

nπ

L
x

=
∫ L

0
θ (y, 0)

[
2

L

∞∑
n=1

exp

[
−
(nπ

L

)2
T

]
sin

nπ

L
y sin

nπ

L
x

]
dy (A6.2)

More General Result: The last result can be generalized to a form which is more useful in
option theory. In general, we can change the distance variables x and y by a simple displacement
of the distance axis so that

θ (x, T ) =
∫ N

M
θ (y, 0) G(x, y) dy =

∫ N−b

M−b
θ (χx + b, 0) G(χx + b, χy + b) dχy

=
∫ N−b

M−b
θ ′(χx , 0) G(χx + b, χy + b) dχy =

∫ N−b

M−b
θ ′(x, 0) G(x + b, y + b) dy

(A6.3)

where the function θ ′(x, 0) reflects the shifted boundary conditions. In the case just considered,
the physical problem solved would be to find the temperature distribution in a wire stretching
from −b to L − b. The boundary conditions are θ ′(−b, T ) = θ ′(L − b, T ) = 0. Making these
specific substitutions in equation (A6.2) gives

θ (x, T ) =
∫ L−b

−b
θ ′(y, 0)

[
2

L

∞∑
n=1

exp

[
−
(nπ

L

)2
T

]
sin

nπ

L
(y + b) sin

nπ

L
(x + b)

]
dy

(A6.4)
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0 +∞

q(x, 0)

q(x, T)

−∞ x

Figure A6.2 Infinite conductor

(ii) Infinite Wire:

Boundary Conditions: Insulated
wire of infinite length.
Initial Conditions: The initial
temperature in the wire as a func-
tion of position is θ (x, 0).

We write the Fourier transform
of the solution as �[θ (x, T )] =
�(ω, T ). See Figure A6.2. Transform the heat equation and use the properties given in
Section A.5(iv), items (A) and (B)

∂�(ω, T )

∂T
= −ω2�(ω, T )

which solves to

�(ω, T ) = �(ω, 0) e−ω2T (A6.5)

Our objective is to find �−1[�(ω, T )]. But we have the following relations:

By definition �(ω, 0) = �[θ (x, 0)]

From standard tables, if e−ω2T = �[ f (x)] then f (x) = 1√
2T

exp

(
− x2

4T

)

so we can write equation (A6.5) in terms of the convolution given in equation (A5.3)

�[θ (x, T )] = �(ω, T ) = �(ω, 0) e−ω2T = �[θ (x, 0)] × �[ f (x)]

= �
[

1√
2π

∫ +∞

−∞
f (x − y)θ (y, 0) dy

]

Substituting the expression for f (x) gives

θ (x, T ) =
∫ +∞

−∞
θ (y, 0)

{
1

2
√

πT
exp

[
− (x − y)2

4T

]}
dy (A6.6)

Note that for θ (y, 0) of the general form eay , the integral converges; furthermore, θ(x, T ) will
have the general form e−bx2

which converges sufficiently fast as |x | → ∞ for the Fourier
transform methodology to hold good.

(iii) Semi-infinite Wire:

Boundary Conditions: Insulated wire with one end maintained at temperature 0◦ and the other
stretching away to infinity.
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0

q'(x, T)

+∞

q(x, 0)

q'(x, 0)

= q(x, 0)

x

Figure A6.3 Semi-infinite conductor

Initial Conditions: The initial tempera-
ture in the wire as a function of position
is θ (x, 0), where 0 < x < ∞.

This standard heat equation problem
is usually solved in the textbooks us-
ing Fourier sine transforms. These are
somewhat simpler than full Fourier
transforms and are normally explained
first. However we do not go into them
here as we are short of space and the re-
sult we need can be obtained from the
last subsection using a little trick. See
Figure A6.3.

The function θ (x, 0) is only of inter-
est for values 0 < x ; however the func-
tion has values for negative x even if these have no physical significance. Let us now define
a new odd function as follows:

θ ′(x, 0) =




θ (x, 0) if 0 < x < ∞
−θ (−x, 0) if −∞ < x < 0

0 if x = 0

Consider the two-way infinite problem of the last subsection if the initial temperature profile
had been θ ′(x, 0); from equation (A6.6) we have

θ ′(x, T ) =
∫ +∞

−∞
θ ′(y, 0)

{
1

2
√

πT
exp

[
− (x − y)2

4T

]}
dy

=
∫ 0

−∞
θ ′(y, 0)

{
1

2
√

πT
exp

[
− (x − y)2

4T

]}
dy

+
∫ +∞

0
θ (y, 0)

{
1

2
√

πT
exp

[
− (x − y)2

4T

]}
dy

Make the variable change y = −z in the first integral, so that it becomes

∫ 0

+∞
θ ′(−z, 0)

{
1

2
√

πT
exp

[
− (x + z)2

4T

]}
d(−z)

= −
∫ +∞

0
θ (z, 0)

{
1

2
√

πT
exp

[
− (x + y)2

4T

]}
dz

θ ′(y, 0) is only used in the domain 0 to ∞ so we may drop the primes on the left-hand side to
give

θ (x, T ) =
∫ +∞

0
θ (y, 0)

{
1

2
√

πT

(
exp

[
− (x − y)2

4T

]
− exp

[
− (x + y)2

4T

])}
dy (A6.7)

For future reference, identical reasoning shows that for a semi-infinite wire stretching from
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−∞ to 0, we have

θ (x, T ) =
∫ 0

−∞
θ (y, 0)

{
1

2
√

πT

(
exp

[
− (x − y)2

4T

]
− exp

[
− (x + y)2

4T

])}
dy (A6.8)

(iv) Influence Function: Each of equations (A6.2), (A6.6) and (A6.7) gives the temperature at a
point x on a wire after time T. The expression in each case has the general form

θ (x, T ) =
∫

θ (y, 0)g(x, T ; y) dy (A6.9)

The term g(x, T ; y) is known as the influence function for obvious reasons: it can be interpreted
physically as the factor which determines the temperature at position and time x, T resulting
from an initial temperature at y, 0. This term happens to be the same as the so-called Green’s
function which emerges from the study of differential equations. We turn our attention to these
in the following section.

A.7 GREEN’S FUNCTIONS

These functions have been popular amongst physicists for a long time. The technique does not
normally lead to new solutions (although we will see an exception), but it is elegant and it does
provide physical insights; and most important, it has become a standard part of the jargon used
in the option theory literature.

(i) Discontinuous Functions: Before proceeding to the Green’s functions, we need to define a
few commonly used functions and their properties:

� The function 1[a<x] is defined by

1[a<x] =
{

1 if a < x
0 if x ≤ a

More generally, 1[condition] equals 1 if the condition is fulfilled and 0 otherwise.
� The Heaviside function is defined by

H (a − x) =
{

1 if 0 < a − x
0 if a − x ≤ 0

Alternatively written, H (a − x) = 1[x<a].

a a e+

1

e

x

Figure A7.1 δ(x − a)

• The payoff of a call option with strike X and under-
lying price ST may be equivalently written in any
of the following forms:

max[ST − X, 0] = (ST − X )+ = (ST − X )1[X<ST ]

= (ST − X )H (ST − X )

(ii) Dirac Delta Function: Consider the discontinuous
function shown in Figure A7.1. This consists of a tall
thin rectangular strip of width ε and height 1/ε. The
function can be written (1/ε)1[a<x<a+ε]. The area un-
der this “curve” is 1. The limit of this function as ε

becomes infinitesimally small is an infinitely tall spike
at x = a; The area under the spike remains 1. The
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function is denoted by δ(x − a). It was first used extensively by the theoretical physicist Dirac;
25 years later it was declared respectable by mathematicians.

The key properties of the delta function are summarized as follows:

� δ(x − a) =
{

0 x = a
∞ x = a

�

∫ +∞

−∞
δ(x − a) dx =

∫ a+ε

a−ε

δ(x − a) dx = 1 (A7.1)

�

∫ +∞

−∞
f (x)δ(x − a) dx =

∫ a+ε

a−ε

f (x)δ(x − a) dx = f (a)

a x

Figure A7.2 δ(x − a)

The delta function was introduced as the limiting case
of a rectangle, but it can equally be regarded as the
limiting case of certain other functions, most notably
the normal distribution function with vanishingly small
variance:

δ(x − a) = lim
σ→0

1

σ
√

2π
exp

[
−1

2

(
x − a

σ

)2]

This is illustrated in Figure A7.2.

(iii) Some Useful Delta Function Relationships: Con-
sider the piecewise function f (x, ε) defined as fol-
lows and illustrated in the accompanying graph:

a ε− a ε+

f(x, e)

x
f (x, ε) =




0 : x < a − ε
1

4ε
(x − (a − ε))2: a − ε < x < a + ε

x − a : a + ε < x

The first and second derivatives of this function may
be written as follows:

x

∂f(x, e)
∂

1

a ε− a ε+
x

∂ f (x, ε)

∂x
=




0 : x < a − ε
1

2ε
(x − (a − ε)): a − ε < x < a + ε

1 : a + ε < x

1

2ε

a ε− a ε+
x

2x

∂2f(x, e)

∂

∂2 f (x, ε)

∂x2
=




0 : x < a − ε
1

2ε
: a − ε < x < a + ε

0 : a + ε < x
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It follows from the functional forms that

lim
ε→0

f (x, ε) → (x − a)+; lim
ε→0

∂ f (x, ε)

∂x
→ H (x − a); lim

ε→0

∂2 f (x, ε)

∂x2
→ δ(x − a)

or in a form which is useful in options analysis

∂(x − a)+

∂x
= H (x − a);

∂2(x − a)+

∂x2
= δ(x − a) (A7.2)

(iv) Basic Green’s Function Relationship: The heat or diffusion operator L̂ and its conjugate L̂∗

are defined by

L̂θ = ∂θ

∂t
− ∂2θ

∂y2
; L̂∗θ = −∂G

∂t
− ∂2G

∂y2

A general heat equation with heat source Q(y, t) is therefore written

L̂θ = Q(y, t) (A7.3)

where the boundary conditions depend on the specific problem solved.
Let us now consider the function θ L̂∗G − GL̂θ where θ is a solution of the heat equation

and G is not yet defined. Putting in the explicit forms of the operators L̂ and L̂∗ gives

θ L̂∗G − GL̂θ = −
{
θ
∂G

∂t
+ G

∂θ

∂t

}
−
{
θ
∂2G

∂y2
− G

∂2θ

∂y2

}

= −∂{θG}
∂t

− ∂

∂y

{
θ
∂G

∂y
− G

∂θ

∂y

}

or in integral form∫ t2

t1

∫ y2

y1

{θ L̂∗G − GL̂θ} dt dy = −
∫ y2

y1

[θG]t2
t1 dy −

∫ t2

t1

[
θ
∂G

∂y
− G

∂θ

∂y

]y2

y1

dt (A7.4)

where the limits of integration are chosen arbitrarily. Let us now choose G to satisfy the
following equation:

L̂∗G = δ(y − x)δ(t − T ) (A7.5)

The boundary conditions have not yet been defined. Clearly, G is a function of two time and
position variables and will be written in full as G〈x, T | y, t〉.

We assume that there is no heat source in the heat equation so that L̂θ = 0. Equation (A7.4)
then becomes

θ (x, T ) = −
∫ y2

y1

[θ (y, t)G〈x, T | y, t〉]t2
t1 dy −

∫ t2

t1

[
θ
∂G

∂y
− G

∂θ

∂y

]y2

y1

dt (A7.6)

The left-hand side is essentially the answer we are looking for. The function G〈x, T | y, t〉 is the
so-called Green’s function defined by equation (A7.5). Our task now is to define the boundary
conditions so that the last equation is reduced to as simple a form as possible. The whole point
of the Green’s function method is to reduce the original heat equation plus boundary conditions
to a conjugate heat equation plus simpler boundary conditions.
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(v) Before proceeding to specific solutions for the Green’s functions, we need to make a general
observation about their structure. Consider the heat equation (A7.3), when the heat source is
a delta function:

∂ J

∂t
− ∂2 J

∂y2
= δ(y − x)δ(t − T ) (A7.7)

This equation describes a wire in which an infinitely intense but infinitesimally short pulse of
heat is introduced at x, T . The above equation describes the physics of how the thermal energy
spreads in the wire, with J 〈y, t | x, T 〉 being the temperature at y, t .

There are a variety of different boundary conditions which give different functions for
J 〈y, t | x, T 〉. One property they all share is that we must have T < t , i.e. the equation only
describes events after the pulse of energy has arrived. In general we write J 〈y, t | x, T 〉 = 0
if t < T .

Equation (A7.5) for the Green’s function looks quite similar to our equation for J. The only
difference is that the direction of time t is reversed. The equation could therefore be thought
of as describing a pulse of energy spreading as time decreases. Corresponding to the heat
equation condition that T < t , we have the property t < T for its conjugate, i.e. envisaging
time running backwards from a heat pulse, the Green’s function is not defined on the other
side of the heat pulse. In general we write G〈x, T | y, t〉 = 0 if T < t .

The fact that this visualization is contrary to the laws of physics is not really relevant. The
conjugate equation for the Green’s function is merely mathematical formalism: it does not
pretend to describe any physical process. Our observation is merely a speculation on what sort
of process could be described by the conjugate equation.

(vi) Free Space Green’s Function: The approach we will use is to look for a Green’s function
which can be written as

G = G0 + G1

where G0 is a general solution of the equation L̂∗G0 = δ(y − x)δ(t − T ), but does not nec-
essarily satisfy the boundary conditions we need for equation (A7.6). G1 is a balancing term
such that G meets the boundary conditions which will allow this last equation to be solved.
It might be a solution to the same equation for G0 or it might solve the equation L̂∗G0 = 0,
since the singularity has already been captured once by G0.

G0 is known as a fundamental or principle solution and is also known as the free space
Green’s function, since it is a solution without tight boundary conditions. It may be derived
using Fourier transforms as we did for the heat equation in Section A.6(ii). We write G as the
Fourier transform of G, and using the properties set out in Section A.5(iv). Equation (A7.5)
can be transformed to

−∂G0〈x, T | y, t〉
∂t

+ ω2G0〈x, T | y, t〉 = 1√
2π

δ(t − T ) e−iωx

where we have used the standard result that e−iωx/
√

2π is the Fourier transform of δ(y − x).
Now define a new variable F = −e−ω2t G0〈x, T | y, t〉 so that

∂ F

∂t
= e−ω2t

{
−∂G0

∂t
+ ω2G0

}
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Substituting this in the previous equation gives

∂ F

∂t
= e−ω2t

√
2π

δ(t − T ) e−iωx or G0 = − 1√
2π

e−ω2(T −t)−iωx + const.

We have already defined G0 (and hence also G0) as zero for T < t . The last equation can
therefore be written

G0 = H (T − t)√
2π

[
e−ω2(T −t)

]× [e−iωx ]

where H is the Heaviside function. Any table of Fourier transforms shows that

e−ω2(T −t) = �
[

1√
2π

exp

[
− x2

4(T − t)

]]
;

1√
2π

e−iωx = �[δ(y − x)]

So that using the convolution result of equation (A5.3) gives

G0 = H (T − t)

2
√

π (T − t)

∫ +∞

−∞
exp

[
− z2

4(T − t)

]
× δ(y − x − z) dz

G0〈x, T | y, t〉 = H (T − t)

2
√

π (T − t)
exp

[
− (y − x)2

4(T − t)

]
(A7.8)

(vii) Infinite Wire: Let us return to the problem of heat conduction in an infinite wire which was
solved in Section A.6(ii). The Green’s function approach starts with equation (A7.6):

θ (x, T ) = −
∫ y2

y1

[θ (y, t)G〈x, T | y, t〉]t2
t1 dy −

∫ t2

t1

[
θ
∂G

∂y
− G

∂θ

∂y

]y2

y1

dt

The equation is very general and we can choose the parameters y1, y2, t1, t2 as we wish. We are
also at liberty to choose any boundary condition we wish: remember it is we who are defining
G (rather than trying to discover it) and we will do so in the most convenient way.

� We will choose y1 = −∞ and y2 = +∞which seem appropriate to the infinite wire problem.
At ±∞ the boundary condition (see Figure A6.2) is θ = 0 and ∂θ/∂y = 0 so that the second
integral in the last equation drops out.

� We choose t2 to be at some arbitrary time greater than T, at which point the Green’s function
equals zero. For notational simplicity we set t1 → t , in which case the equation becomes

θ (x, T ) =
∫ +∞

−∞
θ (y, t)G〈x, T | y, t〉 dy

� There are no further boundary conditions, so we can take G = G0 the fundamental solution
given by equation (A7.8):

G0〈x, T | y, t〉 = H (T − t)

2
√

π (T − t)
exp

[
− (y − x)2

4(T − t)

]

This is a slightly more general form of the result we obtained, using Fourier transforms in
Section A.6(ii).
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(viii) Semi-infinite Wire: Once again, we solve the problem posed in Section A.6(iii) by imposing
appropriate boundary conditions on G in equation (A7.6). The reasoning is parallel to that for
the infinite wire.
� This time let y1 = 0 and y2 = ∞; let t2 be some arbitrary time greater than T and set t1 → t .

The first term in equation (A7.6) is therefore similar to the result for the infinite wire.
� The second term is more tricky. The boundary conditions for θ state that θ (0, t) = θ(∞, t) =

0, so that the first term in square brackets drops out. Also ∂θ/∂y]y=∞ = 0 but there is nothing
to suggest that ∂θ/∂y]y=0 is zero. In order to get the second integral in equation (A7.6) to
drop out, we need to impose the condition that G〈x, T | 0, t〉 = 0.

0

1G

x−

0G

x

1t

2t
y

Figure A7.3 Green’s function with boundary condition G = 0 at x = 0

Our Green’s function will be written G = G0 + G1 where G0 is the fundamental solution.
Let us return to the “Green’s function physics” described in Section A.7(ii). The fundamental
solution was described as the diffusion of a heat pulse at t = T , y = x backwards in time.
Clearly, we can make G equal zero at y = 0 if G1 were a second (but negative) heat pulse
positioned at y = −x and also propagating backwards in time. The positioning of the pulse is
shown in Figure A7.3. Using equation (A7.8) for the free space Green’s function gives

G〈x, T | y, t〉 = 1

2
√

π (T − t)

(
exp

[
− (y − x)2

4(T − t)

]
− exp

[
− (y + x)2

4(T − t)

])
(A7.9)

and equation (A7.6) becomes

θ (x, T ) =
∫ +∞

0
θ (y, t)G〈x, T | y, t〉 dy

This is the same result as we obtained in Section A.6(iii) using Fourier transforms; it is known
as the method of images.
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More General Result: For future reference, we derive the result for a wire stretching from −b
to +∞ by using the transformation of variables used in equation (A6.3)

θ (x, T ) =
∫ +∞

−b
θ (x, t)G〈x, T | y, t〉 dy

where

G〈x, T | y, t〉 = 1

2
√

π (T − t)

(
exp

[
− (y − x)2

4(T − t)

]
− exp

[
− (y + x + 2b)2

4(T − t)

])
(A7.10)

(ix) Finite Wire: This case is trickier than the last two, but the approach is very similar to that for
the semi-infinite wire. The problem is defined in Section A.6(i) and the starting point is again
equation (A7.6).

� Let y1 = 0 and y2 = L; again let t2 be some arbitrary time greater than T and set t1 → t .
The first term in equation (A7.6) is therefore similar to the result for the infinite wire, apart
from the limits of integration with respect to y.

� The boundary conditions for θ are θ (0, t) = θ (L , t) = 0, so we need to set up the Green’s
function such that G〈x, T | 0, t〉 = G〈x, T | L , t〉 = 0.

We achieve the boundary condition for the Green’s function using a reflection principle (method
of images) similar to that of the last section: we build up the necessary conditions progressively
as indicated in Figure A7.4.

0

A

L 2L 3LL−2L−

B

E

C

D

x
x−

Figure A7.4 Green’s function boundary condition G = 0 at y = 0 and y = L

� As in the case of a semi-infinite wire, our fundamental solution at A is combined with its
reflection at B to give zero at y = 0 as in the last section.

� This time, however, we also need the Green’s function to be zero at y = L , so we add another
negative pulse C at y = 2L − x . Pulses A and C are equidistant from y = L and being of
opposite sign, they cancel to give G = 0 at y = L .

� But having added pulse C spoils the balance we had achieved at y = 0; so we need to add
a further pulse D (positive this time) to counteract the effect of pulse C at y = 0. Pulses C
and D must be equidistant from y = L .

� But the addition of pulse D spoils the boundary condition at y = L , so we add pulse E.
� And so on.
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In terms of an infinite series of fundamental solutions, the Green’s function may be written

G〈x, T | y, t〉 = 1

2
√

π (T − t)

n=+∞∑
n=−∞

(
exp

[
− (y − x − 2Ln)2

4(T − t)

]

− exp

[
− (y + x − 2Ln)2

4(T − t)

])
(A7.11)

where once again

θ (x, T ) =
∫ L

0
θ (y, t)G〈x, T | y, t〉 dy

Unlike the last example, this method does not yield the same expression as the Fourier method
[equation (A6.2)]. Both methods give the answers as infinite series, but the terms of these
series do not have a one-to-one correspondence with each other. In both cases we would seek
to truncate the series after a few terms, assuming the remainder to be very small. So which
method is best to use?

� Equation (A6.4) shows that the terms in the series damp away very quickly due to the
exponential term if (T − t)/L2 � 1.

� In Figure A7.4 the free space Green’s functions (i.e. the pulses) are singular when T − t = 0
and they “spread out” thereafter. Thus the larger T − t becomes, the more terms need to be
included in the series in order to satisfy the boundary condition for the Green’s function.
Therefore it is best to use this series if (T − t)/L2 � 1.

More General Result: Just as for the semi-infinite wire in Section A.7(viii), we obtain a general
result by a simple change of space variable using equation (A6.3). For a wire stretching from −b
to L − b, the temperature is given by

θ (x, T ) =
∫ L−b

−b
θ (y, t)G〈x, T | y, t〉 dy

where

G〈x, T | y, t〉 = 1

2
√

π (T − t)

n=+∞∑
n=−∞

(
exp

[
− (y − x − 2Ln)2

4(T − t)

]

− exp

[
− (y + x + 2b − 2Ln)2

4(T − t)

])
(A7.12)

A.8 FOKKER PLANCK EQUATIONS WITH ABSORBING
BARRIERS

(i) General Solution: Following the conventions of Appendix A.2, we consider a Brownian
particle starting at xt at time t and later reaching xT at time T. The probability of this happening
is written f 〈xT , T | xt , t〉 and satisfies both the Kolmogorov equations. The forward equation
(Fokker Planck) is

∂ f

∂T
= 1

2
σ 2 ∂2 f

∂x2
T

− µ
∂ f

∂xT
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Clearly, f and θ are functions of xT , T and xt , t . However, when considering the forward
equation, we treat xt , t as constants and consider only xT , T as variables. From the definition
of the process, we must have f 〈y, t | xt , t〉 = δ(y − xt ).

As a prelude to solving this equation, we simplify the PDE by making the transformation
described in Section A.4(iv)

f 〈xT , T | xt , t〉 = θ〈xT , T | xt , t〉 exp

[
µ

σ 2
(xT − xt ) − µ2

2σ 2
(T − t)

]

and rescaling the time variables t ′ = 1
2σ 2t and T ′ = 1

2σ 2T to give

∂θ

∂T ′ = ∂2θ

∂x2

Solutions to this equation have already been found and for the cases considered in this
Appendix, take the general form

θ〈xT , T ′ | xt , t ′〉 =
∫

boundary
conditions

θ〈y, t ′ | xt , t ′〉{G〈xT , T ′ | y, t ′〉} dy

Substituting for θ in the last equation, using the delta function initial conditions and integrating,
gives us the general result

f 〈xT , T | xt , t〉 = exp

[
− 1

2σ 2
{−2µ(xT − xt ) + µ2(T − t)}

]
G〈xT , T ′ | xt , t ′〉

Note the primes on the time variable symbols in the Green’s function. This merely means
that we need to take account of the scaling factor when we use results derived in the last
section.

Fundamental (Free Space) Solutions: The simplest solution of the Fokker Planck equation
is for an unrestricted particle. The Green’s function is given by equation (A7.8). Adapting the
notation, putting in the time scaling (t ′ = 1

2σ 2t) and simplifying the algebra gives

f 〈xT , T | xt , t〉 = 1

σ
√

2π (T − t)
exp

[
− 1

2σ 2(T − t)
{(xT − xt ) − µ(T − t)}2

]

which is the celebrated formula for a normal distribution. It did not really need the long
excursion via Green’s function to derive this result; but we now turn our attention to more
difficult problems.

Simplified Notation: In the remainder of this section we will slightly restrict the generality
and simplify the notation of the results, in preparation for their application to option theory.
Specifically, we assume that the particle starts at xt = 0, t = 0. The notation used is

f 〈xT , T | 0, 0〉 = F(xT , T ); G〈xT , T | 0, 0〉 = G(xT , T )

so that the general expression for the probability distribution function in terms of the Green’s
function becomes

F(xT , T ) = exp

[
− 1

2σ 2
{−2µxT + µ2T }

]
G
(
xT , 1

2σ 2T
)

(A8.1)
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tt

tx

b

0

Figure A8.1 Absorbing barrier

(ii) Absorbing Barriers: Imagine a particle undergoing
a one-dimensional Brownian motion (a diffusion).
Instead of the unrestricted motion just considered,
there is an absorbing barrier such that if it is touched
by the particle, motion ceases. In Appendix A.2 we
studied the random walk by looking at the progress
of a drunk along a road; the absorbing barrier would
correspond to a deep trench dug across the road!
The barrier is sometimes referred to as a sticky
barrier.

The progress of the particle is illustrated in
Figure A8.1. The Brownian particle, which starts at x0 = 0, t = 0, diffuses until time τ when
it first reaches the barrier at x = b. The time taken to reach the barrier is known as the first
passage time, and is obviously a random variable.

Let Fabs(xT , T ) be the probability density function for particles which are absorbed before
time T, i.e. if the particle is very close to the barrier at time T, the probability of absorption
in the period δT thereafter is Fabs(b, T )δT . But the probability of absorption in the period
δT has to be proportional to the distance moved in δT ; this is proportional to σ

√
δT where

σ is the volatility. This leads us to the unexpected conclusion that Fabs(b, T )δT ∝ σ
√

δT or
Fabs(b, T ) ∝ 1/

√
δT or lim T →τ

xT →b
Fabs〈b, T | b − δxt , T − δT 〉 → ∞.

In the spirit of the Chapman–Kolmogorov equation (A3.2), we can say that at the outset,
the probability of hitting the barrier between times T − δT and T is equal to the probability
of being adjacent to the barrier at time T − δT multiplied by the probability of crossing it in
the interval δT , i.e. the probability of absorption is

Pabs ∝ (Fnon-abs〈b − δxT , τ − δT | 0, 0〉δxT ) × (Fabs〈b, τ | b − δxT , τ − δT 〉δT )

The left-hand side is finite; we have seen that the second term on the right is singular at
xT = b. Therefore we must have Fnon-abs(b, T ) = 0. This is the boundary condition that we
need to solve the absorbing barrier problem.

(iii) Single Barriers: In the last subsection it was shown that the critical boundary condition for a
particle in the presence of an absorbing barrier is that the probability density function for non-
absorbed particles is zero at the barrier; but this problem with Fnon-abs(b, T ) = Fnon-abs〈b, T |
0, 0〉 = 0 has the solution given in equation (A7.10). Using the simplifying initial conditions
x0 = 0, t = 0 and substituting into equation (A8.1) gives

Fnon-abs(xT , T ) = 1

σ
√

2πT
exp

[
− 1

2σ 2
{−2µxT + µ2T }

]

×
{

exp

(
− x2

T

2σ 2T

)
− exp

[
− (xT + 2b)2

2σ 2T

]}

= 1

σ
√

2πT

{
exp

[
− 1

2σ 2T
(xT − µT )2

]

− exp

(
−2µb

σ 2

)
exp

[
− 1

2σ 2T
(xT + 2b − µT )2

]}
(A8.2)
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We need to take stock for a moment at this point. The Green’s function we have just used
implicitly assumes values of xT in the range −b to +∞, i.e. this is the probability density
function for a particle starting at x0 = 0 with an absorbing barrier at −b. It is more usual
(but no more logical) to consider a barrier above the starting point at +b, in which case the
probability density function is

Fnon-abs(xT , T ) = 1

σ
√

2πT
exp

[
− 1

2σ 2
{−2µxT + µ2T }

]

×
{

exp

(
− x2

T

2σ 2T

)
− exp

[
− (xT − 2b)2

2σ 2T

]}

= 1

σ
√

2πT

{
exp

[
− 1

2σ 2T
(xT − µT )2

]

− exp

(
+2µb

σ 2

)
exp

[
− 1

2σ 2T
(xT − 2b − µT )2

]}
= {F0(xT , T ) − Fret(xT , T )}

(A8.3)

Notice that Fnon-abs(xT , T ) is made up of two parts:

� F0(xT , T ): a fundamental (free space) distribution for a particle starting at x0 = 0, t = 0.
� Fret(xT , T ): a fundamental (free space) distribution for a particle starting at x0 = 2b and

t = 0, modified by a factor exp(2µb/σ 2). It can be written in shorthand as AF0(xT − 2b, T ).

Fnon-abs(xT , T ) is of course not defined on the far side of the barrier.

(iv) Physical Interpretation: Let us consider the following experiment: we open a box containing
a known number of fruit flies in a room in order to study how they diffuse through a doorway.
Two methods are proposed:

(A) Open the door for 10 minutes and then count how many flies are left in the room.
(B) Cover the doorway with a large piece of sticky paper; after 10 minutes, count how many

are left in the room.

What is the difference? Simple: (A) gives a bigger fly count in the room since some fly next
door and then came back again; in (B) those that hit the doorway do not get the chance to come
back. The difference is just the number of flies that go next door and return.

Look at equation (A8.3) again in the context of fruit flies. Fnon-abs(xT , T ) corresponds to
case (B) above. It is the probability distribution of particles that do not get stuck to the barrier.
F0(xT , T ) is the probability distribution we would have if there were no absorbing barrier. It
corresponds to the fruit-fly distribution in (A) above. F0(xT , T ) − Fnon-abs(xT , T ) corresponds
to the number that fly out and return again, i.e. Fret(xT , T ) is the distribution of particles that
cross a point and then return to the original side, one or more times.

(v) Graphical Representation: The results of the last subsection are illustrated in Figures A8.2
and A8.3. The first shows the free space distribution functions which are combined to make
up the distribution function with an absorbing barrier.

F0(xT , T ) is the distribution of an unrestricted Brownian particle with drift µ and variance
σ 2T , starting at x = 0, t = 0. F0(xT − 2b, T ) is the distribution of a similar particle, starting at
position x = 2b, t = 0. The function Freturn(xT , T ) = AF0(xT − 2b, T ) was shown in the last
subsection to have a specific physical interpretation: it is the probability density function of all
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AF0(xT - 2b, T)

0

x

b

F0(xT, T)

Figure A8.2 Free space solutions. Shaded area: pdf of particle starting at 0, crossing b and returning
before T

x

AF0(xT - 2b, T)

0 b

F0(xT, T)

x

0 b

Fnon-abs(xT, T)

Figure A8.3 Barrier density. Shaded area: pdf of particle starting at 0, not reaching b before T

particles which start at x = 0, t = 0, cross the point x = b, and then return to the original side.
The function is only defined on the side of the barrier on which the particle started its progress.

The distribution function for Fnon-abs(xT , T ) is obtained from equation (A8.3). It is just the
difference between the free space distribution centered at zero, and another normal distribution
with the same variance but centered at 2b and multiplied by the factor A, i.e. the difference
between the top and bottom curves in Figure A8.3.

Finally, Figure A8.4 shows the overlapping area between the two normal distributions. This
is a very specific distribution function: it was seen above that the part of the curve to the

Freturn(xT, T) =
AF0(xT - 2b, T)

F0(xT, T)

b0

TxTx

Figure A8.4 Pdf for particle starting at 0, crossing point x = b before T
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left of the cusp is the distribution function for particles that cross the barrier but terminate
on the original side at time T. The shaded part to the right of the cusp is just the distribution
function for all those particles that terminate on the right-hand side of the barrier. The two parts
taken together are therefore the total distribution function for particles which have crossed the
barrier, i.e.

Fcrossers(xT , T ) =
{

Freturn(xT , T ) xT < b

F0(xT , T ) b < xT
(A8.4)

(vi) Absorption Probabilities: Fnon-abs(xT , T ) is the distribution of particles which have not been
absorbed by the barrier. The total probability of non-absorption is therefore given by

Pnon-abs =
∫ b

−∞
Fnon-abs(xT , T ) dxT =

∫ b

−∞
{F0(xT , T ) − AF0(xT − 2b, T )} dxT

= N

[
1

σ
√

T
(b − µT )

]
− exp

(
+2µb

σ 2

)
N

[
− 1

σ
√

T
(b + µT )

]

where we have put in the explicit functional form for F0 and used the integral results of
Appendix A.1(v).

The functional form of Fnon-abs(xT , T ) is the same whether b is above or below zero. If the
above calculation is repeated for the case where the particle starts above the barrier, the limits
of integration will be changed to b to +∞; the result will be similar but with the signs for the
arguments in square brackets reversed. This leads us to the more useful, general result

Pnon-abs = N

[
ψ

σ
√

T
(b − µT )

]
− exp

(
+2µb

σ 2

)
N

[
− ψ

σ
√

T
(b + µT )

]
(A8.5)

ψ =
{

+1 0 < b (barrier approached from below)

−1 b < 0 (barrier approached from above)

Using the self-evident relationship Pabs = 1 − Pnon-abs and the property of cumulative normal
distributions 1 − N[a] = N[−a], we have

Pabs = N

[
− ψ

σ
√

T
(b − µT )

]
+ exp

(
+2µb

σ 2

)
N

[
− ψ

σ
√

T
(b + µT )

]
(A8.6)

(vii) First Passage Time: Referring back to Figure A8.1, τ is the time elapsed until the barrier is
hit. It is a random variable which may be defined by

P[T < τ ] = P[xT < b] = Pnon-abs

or

P[τ < T ] = Pabs

If gabs(τ ) is the distribution function for the random variable τ , we must have

Pabs = P[τ < T ] =
∫ T

0
gabs(τ ) dτ or gabs(τ ) = ∂Pabs

∂T

]
T →τ

We have given an expression for Pabs in the last subsection, so that with a little algebra and use
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of equation (A1.2), we get

gabs(τ ) = ψb

σ
√

2πτ 3
exp

[
− 1

2σ 2τ
(b − µτ )2

]
(A8.7)

where ψ was defined in the last subsection.

t

tx

b
0

b bd+

Figure A8.5 Maximum as a barrier problem

(viii) Distribution of Maxima and Minima: The tra-
jectory of a Brownian particle over time T will
have a maximum (and a minimum). The value
of this maximum xmax is a random variable with
its own distribution which may be derived from
the mathematics of absorbing barriers. Refer-
ring to Figure A8.5 we can write

P[xmax < b + δb] = Pnon-abs at b+δb

P[xmax < b] = Pnon-abs at b

The probability that xmax lies between b and b + δb may be written

Fmax(xmax, T )δb = Pnon-abs at b+δb − Pnon-abs at b or Fmax(xmax, T ) = ∂Pnon-abs

∂b

]
b=xmax

Applying this to equation (A8.5) and doing the algebra gives the explicit expression for
Fmax(xmax, T ). Identical reasoning also gives an expression for the minimum value achieved
by the Brownian particle:

Fmax(xmax, T ) = 2

σ
√

2πT
exp

[
− 1

2σ 2T
(xmax − µT )2

]

− 2µ

σ 2
exp

(
+2µxmax

σ 2

)
N

[
− 1

σ
√

T
(xmax + µT )

]
(A8.8)

Fmin(xmin, T ) = 2

σ
√

2πT
exp

[
− 1

2σ 2T
(xmin − µT )2

]

+ 2µ

σ 2
exp

(
+2µxmin

σ 2

)
N

[
+ 1

σ
√

T
(xmin + µT )

]

t

tx

0

L - b

-b

Figure A8.6 Two absorbing barriers

(ix) Double Barrier: We now consider an exten-
sion of the previous single barrier problem to
a situation where we have two absorbing bar-
riers (Figure A8.6), one above and one below
the starting point of the particle. As before,
the boundary condition used in solving the
Fokker Planck equation is that the probabil-
ity density function is zero at the barriers.
The probability density function is given by
equation (A8.1) with the appropriate Green’s
function. In this particular case, the Green’s
function has been obtained in two different
forms: equations (A6.2) and (A7.12).

342



A.8 FOKKER PLANCK EQUATIONS WITH ABSORBING BARRIERS

(A) Series 1 (Green’s Function) Solution: We start with the second of these which is closely
related to the solution for a single barrier:

Fnon-abs(xT , T ) = 1

σ
√

2πT
exp

[
− 1

2σ 2
{−2µxT + µ2T }

]

×
+∞∑

n=−∞

{
exp

[
− (xT + 2Ln)2

2σ 2T

]
− exp

[
− (xT + 2b − 2Ln)2

2σ 2T

]}

This equation is of interest because the terms in the summation go to zero as n → ±∞,
hopefully leaving just a few contribution terms on either side of n = 0. Re-grouping terms and
using the symmetry property

∑+∞
n=−∞ f (n) =∑+∞

n=−∞ f (−n) gives

Fnon-abs(xT , T ) = 1

σ
√

2πT

+∞∑
n=−∞

{
exp

(
+unµ

σ 2

)
exp

[
− 1

2σ 2T
(xT − µT − un)2

]

− exp

(
+vnµ

σ 2

)
exp

[
− 1

2σ 2T
(xT − µT − vn)2

]}
(A8.9)

un = 2Ln; vn = 2(Ln − b)

non-absF
u - term;

n = 0

u - term;

n = 1

-1.0

0.40

2.0

v - term;

n = 0

Figure A8.7 Solution for pdf

The solution is illustrated graphically in Figure A8.7 for b = 1, L = 3, v = 1, t = 1,
µ = 0.1. Only three terms in the series solution need be retained with the parameters at these
levels. Unfortunately, if we feed in parameters typical for barrier options, in the region of six
to 10 terms need to be retained to give an accurate solution.

(B) Series 2 (Fourier) Solution: Using the solution in the form of equation (A6.2) gives

Fnon-abs(xT , T ) = exp

[
− 1

2σ 2
{−2µxT + µ2T }

]

× 2

L

∞∑
n=1

{
exp

[
−
(

nπ

L

)2

T ′
]

sin
nπb

L
sin

nπ

L
(xT + b)

}
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where T ′ = 1
2σ 2T . This may be written more tidily as

Fnon-abs(xT , T ) = exp

(
µxT

σ 2

) ∞∑
n=1

{
an e−bn T sin

nπ

L
(xT + b)

}

an = 2

L
sin

nπb

L
; bn = 1

2

{(
µ

σ

)2

+
(

nπσ

L

)2} (A8.10)

non-absF

term n = 2

term n = 1

-1.0 0.0

0.40

2.0

Figure A8.8 Series 2 solution for pdf

Plotting the first two terms in this series as shown in Figure A8.8 shows that the curve for
Fnon-abs(xT , T ) can be accurately reproduced for the parameters listed above. If we use param-
eters typically found in option problems (e.g. µ = 0.1, σ = 0.5, L = 0.4, b = 0.1), this series
performs far better than the previous one, requiring the retention of only the first couple of terms.

A.9 NUMERICAL SOLUTIONS OF THE HEAT EQUATION

(i) These Appendices contain 20 or 30 pages describing analytical solutions of the heat equation;
but the sad fact is that the vast majority of problems cannot be solved analytically. Chapter
9 describes some of the most popular numerical solutions of the Black Scholes equation in
fairly intuitive terms. In this section we set out the various finite difference methods in a more
formal way in order to highlight the relationship between them.

The equation to be solved is ∂u/∂T = ∂2u/∂x2, since more complex parabolic differential
equations can be reduced to this form by simple transformation. We shall consider discrete
solutions of the equation corresponding to discrete, equally spaced values of x and t.

Grid spacings are defined by x → m δx and T → n δT where m and n are integers; we
define the notation u(x, T ) = u(m δx, n δT ) = un

m .

(ii) Operators: We formally define a number of operators and derive some key relationships be-
tween them.

(A) In general, the effect of a small change in the value of T is given by the Taylor expansion

u(x, T + δT ) =
{

1 + δT
∂

∂T
+ 1

2
(δT )2 ∂2

∂T 2
+ · · ·

}
u(x, T )

≡ exp

(
δT

∂

∂T

)
u(x, T )
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Writing L̂ = ∂/∂T , this may be written in terms of discrete grid points as

un+1
m = eδT L̂ un

m (A9.1)

(B) By just the same reasoning

un
m+1 = eδx D̂ un

m (A9.2)

where D̂ = ∂/∂x .
(C) Define the operator δ̂x by

δ̂x un
m = un

m+ 1
2
− un

m− 1
2

Applying this operator twice, it follows that

δ̂
2
x un

m = un
m+1 + un

m−1 − 2un
m

(D) Using equation (A9.2), the last equation may be written

δ̂
2
x un

m = eδx D̂un
m + e−δx D̂un

m − 2un
m

= {eδx D̂ + e−δx D̂ − 2}un
m

= {
e

1
2 δx D̂ + e− 1

2 δx D̂
}2

un
m

= {
4 sinh 1

2δx D̂
}2

un
m

or more usefully

D̂ = 2

δx
sinh−1 1

2 δ̂x (A9.3)

(E) The heat equation in operator notation is L̂u(x, T ) = D̂2u(x, T ), so that we can formally
write L̂ = D̂2. Using equation (A9.1), we may write

un+1
m = eδT L̂ un

m = eδT D̂2
un

m (A9.4)

(F) Let us consider the value uθ indicated in the ac-
companying diagram:

θ1 θ−

n
mu n 1

mu +uθ
uθ = u(m δx, (n + 1 − θ )δT )

This can be written in terms of a Taylor expansion, either starting from the value un+1
m or

from the value un
m , i.e.

uθ = e−δT θ L̂ un+1
m or uθ = eδT (1−θ )L̂ un

m

Using equation (9.4)

e−δT θ D̂2
un+1

m = eδT (1−θ )D̂2
un

m

or from equation (A9.3)

e−αθ (2 sinh−1 1
2 δ̂x )2

un+1
m = e+α(1−θ )(2 sinh−1 1

2 δ̂x )2
un

m (A9.5)

where α = δT /(δx)2.
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Note that this difference equation is exact. Any approximations are made from this
point forward.

(iii) If u(x, T ) is a reasonably behaved function, successive terms δ̂
i
x u(x, T ) in an expansion of the

last equation diminish in size rapidly. Expanding in powers of δ̂x gives

D̂2 =
(

2

δx
sinh−1 1

2 δ̂x

)2

= 1

(δx)2

{
δ̂

2
x + δ̂

4
x

12
+ δ̂

6
x

90
− δ̂

8
x

560
+ δ̂

10
x

3150
+ · · ·

}

Substituting this into equation (A9.5), re-expanding the exponentials and retaining terms up

to δ̂
6
x gives

{
1 − αθ δ̂

2
x + 1

2
αθ

(
αθ + 1

6

)
δ̂

4
x − αθ

(
α2θ2

6
+ αθ

12
+ 1

90

)
δ̂

6
x

}
um+1

n

=
{

1 + α(1 − θ )δ̂
2
x + 1

2
α(1 − θ )

(
α(1 − θ ) − 1

6

)
δ̂

4
x

+ α(1 − θ )

(
α2(1 − θ )2

6
− α(1 − θ )

12
+ 1

90

)
δ̂

6
x

}
um

n (A9.6)

This is the starting point for deriving the various approximations commonly used.

(iv) Explicit Methods: These are obtained by putting θ = 0 in equation (A9.6), so that to sixth
order

un+1
m =

{
1 + αδ̂

2
x + α

2

(
α − 1

6

)
δ̂

4
x + α

6

(
α2 − 1

2
α + 1

15

)
δ̂

6
x

}
un

m

(A) If we retain only powers up to O[δ̂
2
x ] we have from Section A.9(ii), item (C) above

un+1
m = {1 + αδ̂

2
x

}
un

m = (1 − 2α)un
m + αun

m−1 + αun
m+1

This corresponds to a trinomial tree or, if we let α = 1
2 , a binomial tree.

(B) If we retain terms to an accuracy O[δ̂
4
x ], we get

un+1
m =

{
1 + αδ̂

2
x + α

2

(
α − 1

6

)
δ̂

4
x

}
un

m

which corresponds to a five-pronged tree. If we select α = 1/6, the last term falls away
and we are left with a trinomial tree to compute – but with accuracy to O[δ̂

4
x ].

(v) Pure Implicit Methods: These are obtained by putting θ = 1 in equation (A9.6). Up to O[δ̂
2
x ],

this gives

un
m = (1 + 2α)un+1

m − α
(
un+1

m−1 + un+1
m+1

)
(vi) Intermediate Methods: The best approaches are hybrid methods which stand somewhere

between the purely explicit and purely implicit methods of the last two paragraphs.
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(A) Crank Nicolson Method: In equation (A9.6), put θ = 1/2 and retain terms up to O[δ̂
2
x ]

to give

(
1 − 1

2αδ̂
2
x

)
un+1

m = (1 + 1
2αδ̂

2
x

)
un

m

or in terms of grid point values

un+1
m − 1

2α
(
un+1

m−1 + un+1
m+1 − 2un+1

m

) = un
m − 1

2α
(
un

m−1 + un
m+1 − 2un

m

)
(B) Douglas Method: Returning to equation (A9.6), we retain terms up to O[δ̂

4
x ] and use the

value θ = 1/2 − (1/12α). Ploughing through the algebra shows that the term containing
δ̂

4
x drops out, leaving

{
1 − 1

2
α

(
1 − 1

6α

)
δ̂

2
x

}
un+1

m =
{

1 + 1

2
α

(
1 + 1

6α

)
δ̂

2
x

}
un

m

This scheme is of particular interest because although it involves computations only to

O[δ̂
2
x ], it gives results to O[δ̂

4
x ]. It may be shown that the value of α which minimizes error

is α = 1/
√

20.
A special case arises if we make α = 1/6, in which case θ = 0 and this scheme collapses

to the trinomial method which we encountered in Section A.9(iv), item (B).

A.10 SOLUTION OF FINITE DIFFERENCE EQUATIONS
BY LU DECOMPOSITION

When we solve the heat equation numerically we first select a discretization scheme and a grid
spacing. We then have a series of equations of the form of equation (A9.6) to solve. There are
several ways of tackling the problem, falling into two categories: exact methods and iterative
methods. The exact methods commonly used are Gaussian elimination and LU decomposition
which are mathematically equivalent; the iterative methods include Jacobi, Gauss–Siedel and
a variety of further refinements. We shall confine ourselves to LU decomposition, which is
probably the easiest to understand and more than adequate for anything the reader is likely to
attempt at this stage.

(i) The formal matrix problem posed is to solve for the elements of the column vector p in the
matrix equation Ap = s, if the elements of s are known and A has the tridiagonal form




a −b 0 0 0
−b a −b
0 −b a
0 0 −b 0

a −b
0 0 −b a




The dimensions of the matrix are n × n and we decompose it into two square matrices L

347



Mathematical Appendix

and U:

A = L × U


a −b 0 0 0
−b a −b
0 −b a
0 0 −b 0

a −b
0 0 −b a




=




1 0 0 0 0
l1 1 0
0 l2 1
0 0 l3 0

1 0
0 0 ln−1 1







h1 g1 0 0 0
0 h2 g2 0
0 0 h3

0 0 0 0
hn−1 gn−1

0 0 0 hn




(A10.1)

Our matrix equation can be written

Ap = LUp = Lt = s (A10.2)

and is solved for p in three steps as follows:

(ii) Solve for li , hi and gi : From the defining equation (A10.1) we have:

(A) Multiply row (i − 1) by col i

gi = −b i = 1, . . . , n − 1

(B) Multiply row i by col (i − 1)

hi li = −b i = 1, . . . , n − 1

(C) Multiply row i by col i

h1 = a; gi−1 li−1 + hi = a i = 2, . . . , n

Substituting from (A) and (B) gives

h1 = a; hi = a − b2

hi−1
i = 2, . . . , n

(iii) Solve Lt = s for t: This refers to equation (A10.2), when we already know s:




1 0 0 0 0
l1 1 0
0 l2 1
0 0 l3 0

1 0
0 0 ln−1 1







t1
t2
t3
...
...
tn




=




s1

s2

s3
...
...

sn




so that t1 = s1; ti + li−1ti−1 = si ; i = 2, . . . , n. Using result (B) in the previous subsection
gives

t1 = s1; ti = si + b

hi−1
ti−1 i = 2, . . . , n
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(iv) Solve Up = t for p: Again, writing out the matrix explicitly gives




h1 −b 0 0 0
0 h2 −b
0 0 h3

0 0 0 0
hn−1 −b

0 0 0 hn







p1

p2

p3
...
...

pn




=




t1
t2
t3
...
...
tn




This time, start at the bottom of p and work upwards

pn = tn
hn

; hi pi − bpi+1 = ti i = 1, . . . , n − i

or

pn = tn
hn

; pi = 1

hi
{ti + bpi+1} i = 1, . . . , n − 1

This completes the solution of the matrix problem set out in subsection (i).

(v) General Tridiagonal Matrix: Consider a more complex matrix in which all elements are
different. This has the following form:



b1 c1 0 0 0
a2 b2 c2

0 a3 b3

0 0 a4 0
bn−1 cn−1

0 0 an bn




The LU decomposition still works, but with the gi , hi and li of subsection (ii) now given by

(A) gi = ci i = 1, . . . , n − 1
(B) hi li = aLi + 1 i = 1, . . . , n − 1
(C) h1 = b1; gi−1li−1 + hi = bi i = 2, . . . , n

or
h1 = b1; hi = bi − ai ci

hi−1
i = 2, . . . , n

A.11 CUBIC SPLINE

(i) Suppose y is a well-behaved, continuous function of x. We are given a series of pairs of data
points (xi , yi ) and wish to create a smooth curve joining these points. The features of the cubic
spline method are as follows:

� The total curve is approximated by a series of cubic polynomials in x, for each interval xi to
xi+1.

� The slopes of successive curves are equal at each xi , i.e. there are no kinks in the total curve.
� The curvatures of successive curves (second derivatives with respect to x) are equal at each

xi .
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i-1x ix i+1x

iy

i+1y

y(x)

x

Figure A11.1 Cubic spline

The reader should take a look at scatter graphs in an Excel spread sheet. The setting “scatter
with data points connected by smoothed lines” is essentially a cubic spline. See Figure A11.1.

(ii) Just suppose for a moment that we were approximating the curve with a series of linear
interpolations. In the interval xi to xi+1 we would write

ylinear(x) = A(x)yi + B(x)yi+1

where

A(x) = xi+1 − x

hi
; B(x) = x − xi

hi
; hi = xi+1 − xi

This approximation is not good enough over most of the range xi to xi+1, although it is exact
(by definition) at the end points of the range. We now decide to improve the approximation by
adding a cubic polynomial K (x) to give

ycubic spline(x) = A(x)yi + B(x)yi+1 + K (x)

We drop the “cubic spline” suffix in the following, although it is always implied. The following
properties should be noted:

�
∂2 y(x)

∂x2
= y′′(x) = K ′′(x) because A(x) and B(x) are only linear in x.

� K (xi ) = K (xi+1) = 0 because ylinear(x) is exact at xi and xi+1.
� K (x) is cubic in x so that K ′′(x) is linear in x between xi and xi+1. This means that K ′′(x)

can be written

K ′′(x) = A(x)y′′
i + B(x)y′′

i+1

where y′′
i = y′′(xi ).

(iii) Taken together, and after some algebraic spadework, these properties lead to the following
result:

y(x) = A(x)yi + B(x)yi+1 + C(x)y′′
i + D(x)y′′

i+1

A(x) = xi+1 − x

hi
; B(x) = x − xi

hi
; C(x) = h2

i

6
(A3 − A); D(x) = h2

i

6
(B3 − B)

(A11.1)
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which is confirmed by differentiating and using the results of the previous subsection:

∂y(x)

∂x
= 1

hi
(yi+1 − yi ) − hi

6
(3A2 − 1)y′′

i + hi

6
(3B2 − 1)y′′

i+1 (A11.2)

∂2 y(x)

∂x2
= A(x)y′′

i + B(x)y′′
i+1

(iv) Equation (A11.1) would be easy to evaluate if only we were given values for the y′′
i and y′′

i+1,
as we were for the yi and yi+1. Luckily, we can obtain an expression for these using the
condition that the slopes of successive curves must be equal at the points where they join.
Equation (A11.2) may be written for the two ranges xi−1 to xi and xi to xi+1, and equated at
the point xi to give

hi−1 y′′
i−1 + 2(hi + hi−1)y′′

i + hi y′′
i+1 = 6

hi
(yi+1 − yi ) − 6

hi−1
(yi − yi−1) (A11.3)

If i runs from 1 to n, this is a set of n − 2 equations in n unknowns; we need two boundary
conditions for these to be soluble. The most common assumption to make, leading to the so-
called natural cubic spline, is that there is no curvature at the extreme ends of the composite
curve, i.e.

y′′
1 = y′′

n = 0

(v) Taking the simplest and most common case of equal xi spacing (xi+1 − xi = h), equa-
tion (A11.3) becomes

y′′
i−1 + 4y′′

i + y′′
i+1 = 6

h2
(yi−1 − 2yi + yi+1) (A11.4)

Using the natural cubic spline boundary conditions y′′
1 = y′′

n = 0, this reduces to the same
tridiagonal matrix problem that we encountered in Appendix A.10:




4 1 0 0 0
1 4 1
0 1 4
0 0 1 0

4 1
0 0 1 4







y′′
2
...
...
...

y′′
n−1




=




s2
...
...
...

sn−1




The solution is as before.

A.12 ALGEBRAIC RESULTS

(i) Homogeneous Functions: A function f (S1, S2) is defined as homogeneous (and degree one)
if f (λS1, λS2) = λ f (S1, S2). Using λS1 = v1 and λS2 = v2, it follows immediately that

f = ∂ f

∂λ
= ∂ f

∂v1

∂v1

∂λ
+ ∂ f

∂v2

∂v2

∂λ
= S1

∂ f

∂v1
+ S2

∂ f

∂v2
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Putting λ = 1 in this last equation immediately gives Euler’s theorem for homogeneous
functions:

f = S1
∂ f

∂S1
+ S2

∂ f

∂S2

(x2, y2 )

(x1, y1 )

1x

2x

Figure A12.1

(ii) Farka’s Lemma: A straightforward way of deriving the
arbitrage theorem (there are other ways) is to use this
standard result of linear algebra, which is demonstrated
for the two-dimensional case.

x1 and x2 are two fixed vectors which are shown for
the two-dimensional case in Figure A12.1. We consider
the properties of a position vector b. There are two
mutually exclusive possibilities for this vector: either
it lies between the vectors x1 and x2, somewhere in the
shaded area shown in Figure A12.1; or it lies outside
this area. We examine the necessary consequences of
these two possibilities:

1. If b lies between x1 and x2, then we must be able to write b = a1x1 + a2x2 where both a1

and a2 are positive numbers.
2. b lies outside the shaded area if and only if there exists a vector c such that

� c makes an acute angle with b;
� c makes an obtuse angle with both x1 and x2.

1x

2x

b

c

From the pure geometry, this second condition could
not be fulfilled if b lies between x1 and x2. This
condition can be expressed in terms of inner pro-
ducts as

� c′ · b < 0
� c′ · x1 ≥ 0 and c′ · x2 ≥ 0

We now use matrix notation to describe these results, with

x1 =
(

x1

y1

)
; x2 =

(
x2

y2

)
; A =

(
x1 x2

y1 y2

)
; a =

(
a1

a2

)
; b =

(
b1

b2

)

so that the lemma may be stated more conveniently as follows:

For any matrix A, one of the following two mutually exclusive circumstances must hold:

1. Either there exists a vector a having only positive elements such that

Aa = b

2. Or, there exists a vector c such that

c′ · b < 0 and each element of c′ · A ≥ 0.

Farka’s lemma is immediately extendible to three dimensions using the same arguments, and
does in fact apply to any number of dimensions.
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A.13 MOMENTS OF THE ARITHMETIC MEAN

(i) The arithmetic mean with deferred start averaging is defined in Section 17.1 as

AN = 1

N − ν + 1

N∑
n=ν

Sn = 1

N − ν + 1
{Sν + Sν+1 + · · · + SN }

This may be written in terms of the price relatives Rn = Sn/Sn−1 as

AN = Sν

N − ν + 1
{1 + Rν+1 + Rν+1 × Rν+2 + · · · + Rν+1 × Rν+2 × · · · × RN }

= Sν Lν+1

N − ν + 1
(A13.1)

where Lν+1 is defined by the last equation. The critical point to note here is that using our
usual assumption of independently distributed price relatives, Sν and Lν+1 are independent of
each other, since they are dependent respectively on R1, R2, . . . , Rν and Rν+1, Rν+2, . . . , RN .
Therefore we may write

E[(Sν Lν+1)λ] = E
[
Sλ

ν

]
E
[
Lλ

ν+1

]
; integer λ (A13.2)

For the sake of convenience, we will mix discrete and continuous notation, writing ν δT = τ

and N δT = T . This reflects common practice, where St is assumed to diffuse continuously
but averaging is discrete. Equation (A1.8) shows that

E
[
Sλ

ν

]→ E
[
Sλ

τ

] = Sλ
0 e(λm+ 1

2 λ2σ 2)τ (A13.3)

and with the same reasoning

E
[
Rλ

n

] = e(λm+ 1
2 λ2σ 2)δT = aλ (A13.4)

where this equation defines aλ.

(ii) Consider the term

Lν+1 = 1 + Rν+1 + Rν+1 × Rν+2 + · · · + Rν+1 × Rν+2 × · · · × RN

From the form of this expression we can immediately write

Ln = 1 + Rn Ln+1 ν + 1 ≤ n ≤ N ; L N = 1 + RN (A13.5)

We simplify the notation by writing l (λ)
n = E[Lλ

n], where the superscript is written in brack-
ets to distinguish it from a power, i.e. l (2)

n = (ln)2. The following iterative equations follow
immediately from the last three equations:

ln = 1 + a1ln+1

l (2)
n = 1 + 2a1ln+1 + a2l (2)

n+1

l (3)
n = 1 + 3a1ln+1 + 3a2l (2)

n+1 + a3l (3)
n+1

l (4)
n = 1 + 4a1ln+1 + 6a2l (2)

n+1 + 4a3l (3)
n+1 + a4l (4)

n+1 (A13.6)
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where

ν + 1 ≤ n ≤ N ; l (λ)
N = E[(1 + RN )λ]

The various moments (for deferred averaging) are obtained from the expression

E
[
Aλ

N

] = E
[
Sλ

ν

]
(N − ν + 1)λ

l (λ)
ν+1

and by a repeated use of the elementary algebraic result

1 + x2 + x3 + · · · + xn = 1 − xn+1

1 − x
(A13.7)

The algebra involved in calculating l (λ)
ν+1 is simplified appreciably if instead of summing from

ν + 1 to N with l (λ)
N = E[(1 + RN )λ], we sum l (λ)

n from 0 to M + 1, with l (λ)
M+1 = 1. At the end of

the calculations we retrieve l (λ)
ν+1 from l (λ)

0 simply by making the substitution M → N − ν − 1.

(iii) Moment 1:
ln = 1 + a1ln+1 0 ≤ n ≤ M + 1; lM+1 = 1

l0 = 1 + a1[1 + a1(1 + · · · a1(1 + a1lM+1))]

= 1 + a1 + a2
1 + · · · aM+1

1 = 1 − aM+2
1

1 − a1
(A13.8)

It is more convenient to rewrite this as

l0 = A1 + B1aM+1
1 ; A1 = 1

1 − a1
; B1 = − a1

1 − a1
(A13.9)

A more general version of the same equation can be written

li = A1 + B1aM−i+1
1 (A13.10)

(iv) Moment 2:

l (2)
n = 1 + 2a1ln+1 + a2l (2)

n+1 0 ≤ n ≤ M + 1; l (2)
M+1 = 1

l (2)
0 = 1 + 2a1l1 + a2

[
1 + 2a1l2 + a2

(
1 + 2a1l3 + · · · + a2

(
1 + 2a1lM+1 + a2l (2)

M+1

))]
= 1 + a2 + a2

2 + · · · + aM+1
2 + 2a1aM

2 + 2a1
{
l1 + a2l2 + a2

2l3 + a3
2l4 + · · · + aM−1

2 lM
}

Using equation (A13.10) for the li gives

l (2)
0 = 1 + a2 + a2

2 + · · · + aM+1
2 + 2a1aM

2

+ 2a1
{

A1
(
1 + a2 + · · · + aM−1

2

)+ aM
1 B1(1 + (a2/a1) + · · · + (a2/a1)M−1)

}
These series can be summed and simplified to

l (2)
0 = A2 + B2aM+1

1 + C2aM+1
2

(A13.11)

A2 = (1 + 2a1 A1)

1 − a2
; B2 = 2a1 B1

a1 − a2
; A2 + B2 + C2 = 1
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or more generally

l (2)
i = A2 + B2aM−i+1

1 + C2aM−i+1
2 (A13.12)

Recall that the expression for l (2)
ν+1 which is used to calculate E[A2

N ] is obtained from
equation (A13.11) by substituting M → N − ν − 1.

(v) Moment 3:

l3
n = 1 + 3a1ln+1 + 3a2l (2)

n+1 + a3l (3)
n+1; 0 ≤ n ≤ M + 1; l (3)

M+1 = 1

Slogging out the higher moments is the algebraic equivalent of the salt mines; however, a
pattern does emerge after the third or fourth, although happily, we do not use moments higher
than these.

l (3)
0 = 1 + 3a1l1 + 3a2l (2)

1 + a3
[
1 + 3a1l2 + 3a2l (2)

2 + · · ·
+ a3

((
1 + 3a1lM+1 + 3a2l (2)

M+1 + 3a3l (3)
M+1

))]
= 1 + a3 + a2

3 + · · · + aM+1
3 + (3a1 + 3a2)aM

3

+ 3a1
{
l1 + a3l2 + a2

3l3 + · · · + aM−1
3 lM

}
+ 3a2

{
l (2)
1 + a3l (2)

2 + a2
3l (2)

3 + · · · + aM−1
3 l (2)

M

}
Up to the first series in curly brackets, the calculation is just the same as for the second moment.
For the series in the second curly brackets, we now substitute from equation (A13.12). The
mechanics are as before, and we can write

l (3)
0 = A3 + B3aM+1

1 + C3aM+1
2 + D3aM+1

3 (A13.13)

A3 = (1 + 3a1 A1 + 3a2 A2)

1 − a3
; B3 = (3a1 B1 + 3a2 B2)

a1 − a3

C3 = 3a2C2

a2 − a3
; A3 + B3 + C3 + D3 = 1

(vi) Moment 4: This is a straightforward extension of the previous three moments, although with
the algebra even more long-winded. However the pattern for higher moments now becomes
apparent. We merely quote the answer:

l (4)
0 = A4 + B4aM+1

1 + C4aM+1
2 + D4aM+1

3 + E4aM+1
4 (A13.14)

A4 = (1 + 4a1 A1 + 6a2 A2 + 4a3 A3)

1 − a4
; B4 = (4a1 B1 + 6a2 B2 + 4a3 B3)

a1 − a4

C4 = (6a2C2 + 4a3C3)

a2 − a4
; D4 = 4a3 D3

a3 − a4
; A4 + B4 + C4 + D4 + E4 = 1

Again, recall that l (4)
ν+1 is obtained by substituting M → N − ν − 1 in equation (A13.14).
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(vii) In-progress Averaging: The average is now defined as

AN = ν

N + ν + 1
A + 1

N + ν + 1

N∑
n=0

Sn

The first term is constant, so the defining equation can be written

AN = K + k Asimple

where

k = N + 1

N + ν + 1
and Asimple = 1

N + 1

N∑
n=0

Sn

Asimple indicates simple averaging from the beginning, i.e. setting ν = 0 in all the previous
formulas. Then

E[AN ] = K + k E[Asimple]; E
[
A2

N

] = K 2 + 2kK E[Asimple] + k2 E
[
A2

simple

]
(A13.15)

And so on for higher moments.

(viii) Cross Moments: The simplest of these is defined as E[AN SN ]. Using the same notation as
before, the deferred averaging case can be written

E[AN SN ] = E[(Sν Lν+1)(Sν × Rν+1 × Rν+2 × · · · × RN )]

N − ν + 1

= E
[
S2

ν

]
N − ν + 1

{1 + Rν+1 + Rν+1 × Rν+2 + · · · + Rν+1 × Rν+2 × · · · × RN }
× {Rν+1 × Rν+2 × · · · × RN }

= E
[
S2

ν

]
N − ν + 1

{
aN−ν

1 + a2aN−ν−1
1 + · · · + aN−ν

2

}

= E
[
S2

ν

]
aN−ν

1

N − ν + 1
{1 + (a2/a1) + (a2/a1)2 + · · · + (a2/a1)N−ν}

= E
[
S2

ν

]
aN−ν

1

N − ν + 1

{
1 − (a2/a1)N−ν+1

1 − (a2/a1)

}
(A13.16)

A corresponding equation can be obtained for in-progress averaging using the approach out-
lined in the last subsection.

A.14 EDGEWORTH EXPANSIONS

Consider a probability density function f (x) which is close to (but not exactly equal to) a known
probability density function k(x). For example, we might be trying to describe a distribution
which we know to be close to normal, but which displays slight skewness. Edgeworth expan-
sions express f (x) as an infinite series containing k(x) and its derivatives with respect to x; as
such it may be thought of as fulfilling a role analogous to a Taylor series.
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(i) The reader is reminded of the material on moment generating functions given in
Appendix A.2(ii). Two definitions are key:

� The moment generating function is defined by

M f (�) = E f [e�x ] = 1 + � E f [x] + �2

2!
E f [x2] + · · ·

(A14.1)

Mk(�) = Ek[e�x ] = 1 + � Ek[x] + �2

2!
Ek[x2] + · · ·

The term E[xn] is known as the nth moment of the distribution.
� The cumulants κn of a distribution are defined by the following:

M f (�) = exp

[
�κ

f
1 + �2

2!
κ

f
2 + �3

3!
κ

f
3 + · · ·

]
and

Mk(�) = exp

[
�κk

1 + �2

2!
κk

2 + �3

3!
κk

3 + · · ·
]

(A14.2)

Expand the exponential in the last equation (eα = 1 + α + 1
2!α

2 + · · ·) and equate powers of
� in this expansion with powers of � in equations (A14.2). Solve the resultant simultaneous
equations to give

κ1 = E[x] = µ; κ2 = E[(x − κ1)2] = σ 2

κ3 = E[(x − κ1)3]; κ4 = E[(x − κ1)4] − 3κ2
2

(A14.3)

The cumulants κ1, κ2, κ3 and κ4 are called the mean, variance, skewness and kurtosis of a
distribution. Higher cumulants will not be considered.

(ii) Dividing M f (�) by Mk(�) in equation (A14.2) gives

M f (�) = Mk(�) exp

[
�δκ1 + �2

2!
δκ2 + �3

3!
δκ3 + · · ·

]
where δκn = κ f

n − κk
n

= Mk(�)

{
1 + �E1 + �2

2!
E2 + �3

3!
E3 + · · ·

}
(A14.4)

where once again we have expanded the exponential and collected powers of �. In terms of
δκn , the En can be written

E1 = δκ1; E2 = δκ2 + (δκ1)2; E3 = δκ3 + 3δκ1δκ2 + (δκ1)3

E4 = δκ4 + 4δκ1δκ3 + 3(δκ2)2 + 6(δκ1)2δκ2 + (δκ1)4 (A14.5)

(iii) The objective of this Appendix is to find an approximation to the distribution f (x) which can
be written

f (x) = k(x) + u1(x) + u2(x) + u3(x) + · · ·
where the terms trail off to zero.
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From the definition of Mk(�), integrating by parts and assuming that all derivatives of k(x)
go to zero as x → ±∞, we have

Mk(�) =
∫ +∞

−∞
e�x k(x) dx = 1

−�

∫ +∞

−∞
e�x ∂k(x)

∂x
dx = 1

(−�)2

∫ +∞

−∞
e�x ∂2k(x)

∂x2
dx = · · ·

= 1

(−�)n

∫ +∞

−∞
e�x ∂nk(x)

∂xn
dx

Or more simply

�nMk(�) = (−1)n
∫ +∞

−∞
e�x ∂nk(x)

∂xn
dx (A14.6)

Using this last formula and the definitions of the moment generating functions allows us to
write equation (A14.4) as∫ +∞

−∞
e�x f (x) dx =

∫ +∞

−∞
e�x {k(x) + u1(x) + u2(x) + u3(x) + · · ·} dx

where

un(x) = En
(−1)n

n!

∂nk(x)

∂xn

or equivalently

f (x) = k(x) + u1(x) + u2(x) + u3(x) + · · · (A14.7)

(iv) Suppose we wish to find the expectation of the expression max[0, ST − X ] where ST has
the probability distribution f (ST ) which is close to the lognormal distribution l(ST ). This
would arise if we were investigating the value of a call option, knowing that the underlying
distribution is slightly skewed and fat-tailed. It also occurs in the investigation of arithmetic
average options:

E[max[0, ST − X ]] =
∫ ∞

X
(ST − X ) f (ST ) dST

=
∫ ∞

X
(ST − X )l(ST ) dST + En

(−1)n

n!

∑
n

∫ ∞

X
(ST − X )

∂nl(x)

∂xn
dST

The first term on the right-hand side is just the Black Scholes type expression

S0 e(m+ 1
2 σ 2)T N[d1] − XN[d2]

d1 = 1

σ
√

T

{
ln

S0 e(m+ 1
2 σ 2)T

X
+ 1

2
σ 2T

}
; d2 = d1 − σ

√
T

In the second term, we use first equations (A1.7) and then the following simplification, obtained
by integrating by parts:∫ ∞

X
(ST − X )

∂nl(ST )

∂Sn
T

dST =
[

(ST − X )
∂n−1l(ST )

∂Sn−1
T

]ST =∞

ST =X

−
∫ ∞

X

∂n−1l(ST )

∂Sn−1
T

dST

= ∂n−2l(ST )

∂Sn−2
T

]
ST =X
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Retaining only terms up to E4 we can now write for a call option

e−rT E[max[0, ST − X ]] = e−rT
{

S0 e(m+ 1
2 σ 2)T N[d1] − X N[d2]

}
+ e−rT

{
−E1 N[d2] + 1

2!
E2l(X ) − 1

3!
E3

∂l(ST )

∂ST

]
ST =X

+ 1

4!
E4

∂2l(ST )

∂S2
T

]
ST =X

}
(A14.8)
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COMMENTARY

The purpose of this section is to give the reader a useful guide to further sources, rather than to accredit
every wrinkle in the development of the subject. The readers of this book will be much more inclined to
look for additional information in other books rather than original papers, as the former are usually far
more accessible. There follows a short and very personal commentary on the books available in 2002.
This is not comprehensive and certainly does not give proper credit for the historical development of the
subject: no “. . . seminal paper written by Black and Scholes in . . . ” But it gives the reader a guide of
where to look next if he needs more. Part 3 on Exotic Options is perhaps the exception since treatment
of the subject in books is thin and the next step is often the original paper.

(i) General and Introductory Texts: Hull (2000) has a very special place in any bibliography. It was the
first comprehensible and comprehensive book on derivative theory and was the introductory text for
most people working in the industry today. It remains a model of jargon-free clarity and has been
kept reasonably up-to-date in successive editions. However, it is an introductory text and needs to be
supplemented for serious quantitative work.

Wilmott (1998) is a romp which some people really enjoy and other less so. It is an introductory text
intended for the young-of-heart, and feels more modern than Hull. Wilmott’s talent for recycling material
means that this book has now metamorphosed to Willmot (2002).

Briys et al. (1998) is the most advanced general text and is very useful; but it has many authors and
suffers from some consequent weaknesses – unevenness of style and quality, and a tendency to go off at
tangents while giving some important topics only cursory treatment. It has a very good bibliography.

The present book is a text on equity-type options, which means that the theory, procedures and formulas
can be transferred directly to the analysis of foreign exchange (as well as futures, commodities and stock
indices). Anyone who has trouble with this transference is recommended to consult DeRosa (2000).

Finally in this section, we should mention a nice little book called “The Complete Guide to Option
Pricing Formulas” (Haug, 1998). Despite the “complete”, it does not derive any formulas – just states them.
Of course, you can never capture all the formulas, but it is a well-edited reference book, and the reader
will find it very useful when he writes his own book and needs an aid in hunting for typos in formulas.

(ii) Numerical Methods: A number of good, intermediate level texts have appeared in the last four or five
years (although there is still room to fill a few neglected areas). The first was Clewlow and Strickland
(1998), which covers the material of Part 2 of this book and is used quite widely. It covers both equity-type
and interest rate derivatives. The latter part has become dated and unfortunately crowds out the former,
which is still valid and could do with expanding.

Recognition that a differential equation can describe any option came early in the development of
derivative theory, but as a routine computational approach it was much popularized by Wilmott et al.
(1993); a more recent version of this book is Wilmott et al. (1995). Tavella and Randall (2000) is a
good, practical book on numerical solutions of the Black Scholes equation. Shaw (1998) has some very
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interesting material in the same field, and would have received wider recognition if it had not so closely
hitched itself to “Mathematica”.

There are three readily available sources for implied trees, volatility surfaces, etc.: Rebonato (1999)
which is incisive as one would expect from this author, but can be hard to follow; and two collections of
important papers in the field – Broadie and Glasserman (1998) and Jarrow (1988). Jäckel (2002) is the
only book dedicated to Monte Carlo for derivatives, but Dupire (1998) is a very useful collection of the
most important papers together with some exceptionally good linking commentary.

(iii) Exotics: Despite the mountain of papers written on this subject in the 1990s, coverage of the field by
dedicated books is surprisingly thin. Zhang (1998) is very detailed and thorough but sticks fairly much
to analytical models. Two other books, Nelken (1996) and Clewlow and Strickland (1997), are both
collections of essays by different authors and suffer from an absence of unifying methodology. The next
stops are chapters in general texts and then back to the original papers.

(iv) Stochastic Calculus and Derivatives: This area has progressed from inadequate coverage to supersatu-
ration in five years. The books taken individually are sound and worthy, but taken together there is a lot
of repetition and redundancy. A few words might help the reader avoid getting too many duplicates.

1. First come the pure mathematics text books: top of the list is the classic Karatsas and Schreve (1991);
its rival, Revuz and Yor (2001) covers more or less the same material and may be slightly more directly
applicable to derivatives. The former is an American textbook while the latter is a French textbook
written in English, which accounts for differences in style and popularity. Øksendal (1992) again
covers mostly the same areas but is a little easier, while still remaining a serious mathematician’s book.
Anyone without a measure theory background is recommended to look at Ash and Doléans-Dade
(2000) before trying these last three books. Alternatively, Cox and Miller (1965) is an old classic which
explains stochastic processes in a fairly intuitive way without measure theory – although you will not
be able to follow the modern options literature with only this behind you. Local Time is a topic likely
to get more attention among option theorists in the future, and is well covered in Chung and Williams
(1990).

2. Five years ago, there were just two books dedicated to stochastic theory applied to finance theory:
Dothan (1990) and Duffie (1992). The first is a little easier and contains some interesting material,
but now looks very dated; the second is still a standard text for specialist graduate students, but
Nielsen (1999) and Steele (2001) now compete directly and look a bit more up-to-date.

3. Next come the general derivative textbooks based on stochastic theory, in roughly ascending order
of difficulty. Baxter and Rennie (1996) made the first brave attempt to bring stochastic theory and
martingales to non-technicians; but while it is very clearly written, it does not give the reader enough
to access the serious literature. Neftci (1996) was a little more advanced but suffered from the same
drawback; however, the second edition (2000) is much more complete and is recommended. Just a
little more advanced is Pliska (1997), which disappoints by what it has left out: it only covers discrete
(not continuous) time theory, but does this very well.

After that, there are many books: Bingham and Kiesel (1998), Musiela and Rutkowski (1998),
Elliot and Kopp (1999), Hunt and Kennedy (2000); they all have the same academic approach and
vary slightly in level and style.

4. Finally, there are interest rate derivatives books. The first was Rebonato (1998) which remains quite
distinctive and the recommended text for practitioners. Others in this category include Martellini and
Priaulet (2001) and Brigo and Mercurio (2001), with more to follow soon.

(v) General Mathematics: There is a very large number of textbooks to chose from and the following are
the author’s first choices: for a general mathematics text, Kreyszig (1993) is excellent. There are many
introductory mathematical statistics books and we use Freund (1992). Johnson and Wichern (1988) is
the standard book on multivariate statistics. Press et al. (1992) is indispensable for any quant and is
particularly relevant on random numbers, cubic spline and numerical solutions of differential equations.

Partial differential equations are well covered by Kreyszig (1993), Haberman (1987) and Farlow
(1993), while the best book on their numerical solution is Ames (1997); Smith (1978) is also good on this
latter topic. A highly recommended short monograph on Green’s functions (unfortunately temporarily?
out of print) is Greenberg.

362



Bibliography and References

BOOKS

Ames W (1977) Numerical Methods for Partial Differential Equations, Academic Press.
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Index

Adapted process, 234
Admissible strategies, 239
American options, 18–21, Chapter 6

on forwards and futures, 69–71
pricing with binomial model, 83
pricing with finite difference methods, 100

Antithetic variables, 133
Arbitrage, Chapter 19

principles of, 7–8
arbitrage hypothesis, 230
arbitrage theorem, 230

Arrow Debreu securities, 114, 228
Asian options, Chapter 17

arithmetic, 206
geometric, 203, 206
average price, 201
average strike, 201
deferred start averaging, 201, 204
in progress averaging, 201, 205
Vorst’s method, 207
Levy’s correction, 209
Edgeworth expansions, 209
geometric conditioning, 211
Monte Carlo, 134

Asset or nothing options, 150

Backward and forward trees, 114
Backward difference, 88
Backward equation, see Kolmogorov

backward equation
Barone-Adesi & Whaley approximation, 65–68
Barrier options, Chapters 15 & 16

applications, 184
binary options, 183
binomial trees, 195
digital, see binary
discrete monitoring, 199
Greeks, 186
look-back options, 193–195

outside barrier options, 190
partial barrier options, 192
rebates, 182
single barrier puts and calls, 177–181
solve Black Scholes PDE, 181

Basis risk, 58
Bear spread, 22
Bermudan option, 86
Bets, 149
Binary options, 149, 183
Binomial distribution, 310–312
Binomial Model, Chapter 7

American options, 83
bushy trees, 81
discretisation schemes, 78–80
equivalence to difference method, 92
expressed in terms of martingales, 237
with variable volatility, 115

Bivariate normal distribution, 303
Black ’76 model, 60
Black Scholes Equation, 39

expressed as a simple heat equation, 322
for forwards and futures, 59–60
from Feynman-Kac theorem, 265
relation to Kolmogorov backward equation,

318
solution for European calls, 52
solution for barrier options, 181

Black Scholes model, Chapter 5
Greeks, 53–56

Black Scholes world, assumptions, 51
Box spread, 23
Box-Muller method, 132
Brownian motion, 243

first variation, 247
fractal nature, 244
infinite crossing, 245
local time, 266
quadratic (second) variation, 246



Index

Brownian motion (cont.)
relation to Wiener process (Levy’s theorem),

243
two Brownian motions, 269–271

Bull spread, 22
Bushy trees, 81
Butterfly, 25

Call spread, 22
Capped call, 22
Capped put, 22
Cash or nothing options, 149
Cauchy’s equation, 69
Central limit theorem, 30
Chapman Kolmogorov equations, 314
Choosers

complex, 173
simple, 147

Clicquets, 147
Collar, 24
Commodities, 58
Complete market, 229
Compo, 163, 296
Compound options, 169–172
Conditional distribution, 306
Conditional expectations, 234–235
Conditioning, 211
Condor, 25
Consistency, 89
Consistent process, see adapted
Continuous interest, 3
Control variates, 134
Convection, 321
Converence, mean square, 247
Convergence of numerical methods, 90
Convolutions, 325
Correlated

Black Scholes equation for correlated
assets, 159

Brownian motions, 269–271
Brownian paths, 303
normal variates, 303–306
random numbers, 132
stock prices, 153

Correlation options, Chapters 12–14
Currency translated options, Chapter 13
Margrabe, 154
maximum of two assets, 155
maximum of three assets, 156
use of binomial model, 160–162
use of Monte Carlo, 140

Cox, Ross and Rubinstein, 79
Crank Nicolson, 89
Cubic spline, 349
Cumulants, 210, 357

Curran’s method, 211
Currency translated options, Chapter 13

flexo, 163
compo, 163–165, 296
quanto, 165–167, 296
outperformance options, 108

Deferred averaging, 201
Delta, see Greeks

Black Scholes, 54
hedging, see dynamic hedging

Derman Kani implied trees, 118–123
Diffusion equation, 271, 319
Diffusion, generator, 271
Digital options, see binary options
Dimensionality, 140
Dimensionality, curse of, 126
Dirac delta function, 329
Dividends

discrete, 4
continuous, 5

Domestic martingale measure, 294
Douglas, 89
Dufort and Frankel, 88
Dynamic hedging, 44–46
Dynkin’s formula, 272

Edgeworth expansion, 210, 356–359
Euler’s theorem, 352
Exchange options, 153
Exercise boundary, 64
Explicit finite difference method, 91
Exploding calls, 184
Extendible options, 173

Farka’s lemma, 230, 352
Faure sequences, 138
Feynman Kac theorem, 265
Filtration, 234
Financing cost, 45
Finite difference approximations, 87–89
Finite difference methods, Chapter 8

forward difference, 88
backward difference, 88
explicit, 91, 346
implicit, 93, 346
Crank Nicolson, 89, 347
Douglas, 89, 347
Richardson, 88
Dufort and Frankel, 88
Boundary conditions, 91

Flexo, 163
Fokker Planck equation

Arrow Debreu prices, 115
derivation, 316–317
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for European calls, 109–112
forward trees, induction, 114
with absorbing barriers, 336–344

Foreign exchange rate options, 57
See also Currency translated options

Foreign martingale measure, 295
Forward

contract, 8–9
difference, 88
induction, 113
option on forward price, 58–61
price, 9
value of contract, 10

Forward start option, 145
Fourier integrals, 323
Fourier methods for solving the heat equation,

322–325
Fourier series, 323
Fourier transformations, 324
Free lunches, 256
Futures

contract, 11–13
option on price, 58–61

Gamma, see Greeks
Gap options, 150
Garman Kohlhagen model, 57
Gaussian distribution, 243
Geometric conditioning, 211
Girsanov’s theorem, 277–280
Greeks

Black Scholes, 53–56
major, 49
minor, 50

Green’s function, 329–336
Arrow Debreu prices, 115
free space, 332
infinite wire, 333
semi-infinite wire, 334
finite wire, 335

Halton numbers, sequences, 136
Hamilton Jacobi Bellman equation, 274
Heat equation, 319
Heat equation, numerical solutions, 344
Heat loss, 321
Heat source, 320
Heaviside function, 329
Hedging vs replication, 41
Homogeneous functions, 145, 351

Implicit finite difference method, 93
Infinite crossing property, 245
In-progress averaging, 201
Instalment options, 172

Instantaneous hedge, 41
Ito

integral, 250, 252–255
Ito’s lemma, 34, 260
Ito’s lemma for two assets, 159
Ito process, 34, 260
Ito’s transformation formula, see Ito’s lemma

Jacobian, 132
Jarrow and Rudd, 78
Joint normal distribution, 306

Knock-in rebate, 182
Knock-out rebate, 183
Knock in/out options, see barrier options
Kolmogorov equations,

derivation, 314–318
backward equation and Black Scholes

equation, 318
backward equation from Feynman-Kac

theorem, 266
forward equation, see Fokker-Planck

equation

Ladders,
fixed strike, 185
floating strike, 186

Lax’s equivalence theorem, 90
Levy’s correction, 209
Levy’s theorem, 243
Local time, 266–269
Lognormal distribution, 300
Lookback options

fixed strike, 193
floating strike, 193
strike bonus, 195

Low discrepancy sequences, 136

Margrabe, 150
Market price of risk, 281
Markov process, 243, 309
Markov time, 285
Martingale

definition, 235
in casino, 257
Ito integral, 255
Feynman-Kac theorem, 265
representation theorem, 236, 238
transformations, 238
self-financing portfolios, 238–239

Measurable, 234
Measures,

changes in, 275–277
equivalent, Chapter 24

Method of images, 334
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Moment generating function, 278–280, 310,
312, 357

Moment matching, 207
Moments of the arithmetic mean, 353–356
Monte Carlo, Chapter 10

Normal
bivariate N distribution, 303–306
distribution, 299
random numbers, 131

Novikov condition, 279
Numerical integration vs Monte Carlo, 126
Numerical solutions of PDEs, 344–347

Black Scholes equation, Chapter 8
LU decomposition, 347–349
passport options, 222
worked example, 97–100

One-touch options, 184
Optimal control, 272
Optimal stopping, 286
Ornstein-Uhlenbeck process, 264
Outperformance options, 168
Outside barrier options, 190

Partial barrier options, 192
Passport options, Chap 18, 297–298
Pay later options, 150
Payoffs, 15, 16
Perpetual puts, 68
Power options, 151
Previsible functions, 234
Probability measure, 233
Pseudo-probability, 37, 235
Pseudo-random numbers, 130
Put spread, 22
Put-call parity,

American options, 20
European options, 16

Put-call symmetry, 187

Quanto, 165, 296

Radon-Nikodym derivative, 276
Rainbow options, 158
Random numbers

pseudo-, 130
quasi-, 135–139
standard uniform, 130
standard normal, 131
correlated, 132

Random walk, 309–314
arithmetic, 76
geometric, 76
and normal distribution, 311

Ratchets, 147
Rebates, 182
Reflection principle, 290
Repo market, 6
Rho, see Greeks
Richardson, 88
Risk neutral, 9, 37, 40, 51

world, 37
measure, 281

Sample space, 233
Seed, 131
Self-financing

condition, 45
portfolios, 238

Semi-martingales, 255
Shout options, 148
Siegel’s paradox, 295
Sigma space, algebra, 233
Smoothness condition, 65
Snell’s envelope, 284
Soft strike options, 152
Square integrability condition, 254
Stability, 90
Standard Brownian motion, 241
State of nature, the world, 227
State prices, 114
Static hedging, 187
Stochastic control, 272
Stochastic differential equations, 262
Stochastic integration, 261
Stock indices, 58
Stock price simulation, 127
Stop-go paradox, 287–289
Stopping time, 285
Straddle, 24
Strangle, 24
Strategy,

non-simple, 256
simple, 256

Sum of 12 method, 131
Super-martingale, 284

Tanaka-Meyer formula, 269
Tanaka’s formula, 268
Taylor’s theorem, 34
Theta, see Greeks
Time

maturity vs date, 5
local, see local time

Tower property, 235
Trading options, 218
Trading strategy, 238
Transition probabilities, 121, 182
Tribe, 233
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Trinomial trees, 115–118
Triplet, 233
Two barrier options, 189

Variance vs volatility, 31
Variation

first, 245
joint, 269
quadratic, 246
second, see quadratic

Vega: see Greeks
Viable market, 230, 235
Volatility

and variance, 31
average, 106
historic, 107

implied, 106
instantaneous, 106
integrated, 106
local, 106, 109
price, 105
realised, 107
surfaces, 123
skew, 107
smile, 108
spot, 106
term, 106

Wiener process, 33
generalised, 34
and binomial processes, 77
and Brownian motion, 243
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